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Abstract. We provide technical details for both a fibring and an inde-
pendent combination of a normal and a non-normal logics underlying a
normative multi-agent system (normative MAS). Such combinations lead
to different levels of expressiveness of the system. Based on the fibring,
we give a possible structure for a combined model checker for the MAS.
The independent combination provides: (i) an ontology of pairs (mental
configuration-visible behavior), which can be understood as a structural
account to supporting non-monotonicity; and (ii) a logics where to write
and test the validity of a wider set of well-formed formulas.

Keywords modal logics, combination of logics, model checking, norma-
tive multi-agent systems.

1 Introduction

The notion of collective trust within a multi-modal setting is analyzed and de-
fined in [17] using the normal modalities Bel, Goal, Int, O, C-Bel, and C-Int
for modelling beliefs, goals, intentions, obligations, and collective beliefs and col-
lective intentions respectively. Qualitatively distinct levels of trust are defined,
and possible connections between different forms of group trust and the emer-
gence of obligations within groups of agents are outlined in the theory. From the
logical point of view, it is stated that the definitions provided do not add any-
thing new to the base semantic techniques, which are essentially Kripke-styled
uni-agent definitions extended to multi-agent definitions [3]. However, the notion
of agency used amounts to a non-normal modal system and so requires some re-
framing of the whole system. Smith and Rotolo then reframe Dunin-Keplicz and
Verbrugge’s original semantics into an equivalent one based on multi-relational
models [9]. The advantage of this semantics is to preserve the basic intuition and
structure of Kripke models, and allows not to deviate from [3]’s account.

We make the following observations regarding some logical aspects of the
theory in [17]:

Observation 1. Expressiveness of the system. The idea of direct and personal
action to carry out a state of affairs is formalized by the well-known operator
E [4, 9] (called Does in [17], name we will adopt from now on); a formula like
Doesi A means that “agent i brings it about that A ”. In this setting, the Does
modalities are always applied to atomic propositional constants representing
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single behavioural actions, as in e.g. Doesx PayBill (which is meant to stand
for “agent x pays the bill”). In the theory under study, normal operators interact
with the Does modalities in a restricted one-way manner: agents’ actions always
appear as innermost operators within well-formed formulas (wffs), as in e.g.
O(Doesx PayBill) (which is meant to stand for “it is obligatory that agent
x pays the bill”). This means that no other modalities occur in the scope of
a Does; we are not able to write sentences like e.g. Doesi (Doesj PayBill)
(meaning “agent i makes agent j pay the bill”).

Observation 2. Semantics. The multi-relational model of the theory ([17],
Definition 2), is presented as a natural embedding of Kripke semantics into a
Scott-Montague semantics [9, 11]. Such embedding is assumed correct because
Kripke semantics can be seen as a special case of Scott-Montague semantics
(the completeness proof for Does is available in [4, 9]). Although the referred
concrete embedding appears to be straightforward in [17], it is worth pointing
out that it requires some detailed technical machinery for adapting Kripke-like
completeness proofs to Scott-Montague proofs.

Observations 1 and 2 above motivated the analysis of the possibility of work-
ing towards concrete implementations for the outlined MAS; we also took as main
inspiration the modal model checking approach from the work of Francheset et
al. [7]. We are aware of the intrinsic problems regarding computational aspects
of modal logics [8]. In our concrete case, we have a complex enough logics that
puts together normal and non-normal modalities which lead us to a potentially
huge multi-modal model not easily tractable from a computational point of view
[10]. We initiated therefore the application of a divide-and-conquer strategy. As
it is well known, there are no uniform solutions for putting together deductive
engines; nonetheless we found that we can depict the multi-modal logic under
study as the result of two different processes of combinations of logics: fibring
and independent combination [6, 7]. The divide-an-conquer point of view helped
us to see the main model as splitted into two component sub-models, each with
its own peculiarities; both submodels are lately put together in such a way that
they preserve their own completeness properties and we keep modularized their
respective proof porcedures.

Independently of the MAS’ logics we use throughout the paper, the accounts
and techniques applied should be useful to approaches that aim at combin-
ing/decomposing normal and non-normal modal logics. Attempts of this kind
should also take into account the description of the failed decomposition of two
non-normal modal logics explained by Fajardo and Finger in [5].

A fibring is a particular combination of logics in which, intuitively, one logical
machinery is placed on top of another base logical machinery. In this case, we
see the normal logic placed on top of the non-normal logic. We believe that
this way of looking at the theory in [17] is clean and may shed light on some
implementation issues. For instance, we found a natural correspondence between
the fibring an the interrelation of model checkers for both normal and non-normal
formulas. Moreover, other nested fibrings become clearer to define and implement
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over the theory; for example, a further fibring with a temporal logic adds yet
another useful modeling level to the system.

The independent combination allows us to put together two distinct models.
Looking at the original model in [17] as an independent combination amounts to
consider it as two sub-structures, one normal, one non-normal, that can be put
together to build an ontology for representing pairs of states-of-affairs where to
model and test mental aspects - conducts. This ontology appears useful to capture
scenarios where what agents have in mind and what they do is relevant. It is clear
that agents act differently in different times or under different circumstances,
e.g. when believing in or knowing different or new things. The independent
combination may be seen therefore as putting together two perspectives: (i) a
traditional modal cognitive account of agents, and (ii) a structural approach
to non-monotonicity. The relation between mental states and non-monotonicity
has already been studied by Meyer and van der Hoek, and Thomason [14, 19].
Our approach can be seen as a way of introducing non-monotonicity from the
modeling point of view. As an example, suppose the following facts: one, at a
given point, may have no religion and therefore eats all types of animal meat.
Later on time, one embraces some cult that forbids meat eating. Possible pairs
of situations such as (no religion, meat eating), (no religion, vegetarian), (this
religion, meat eating), (this religion, vegetarian) provide a basis for analyzing
e.g. agents’ commitment to the cult at different points.

The rest of the paper is organized as follows. Section 2 describes the logical
framework used to talk about agents, their internal states, their visible behavior,
and norms. Section 3 reorganizes the multi-relational model in [17] as a fibring,
which amounts to place the normal logics on top of the non-normal logics. For
doing this, we first obtain two restrictions of the original logics. Based on the
fibring, the sketch for an appropriate model checker is also outlined. Section 4
presents an independent combination of the normal and the non-normal coun-
terparts of the base logics. This combination leads to an ontology of pairs of
state-of-affairs which allows a structural basis for non-monotonic inferences and
to more expressiveness. For example, it is possible to write and test in the new
ontology wffs such as Doesi (Doesj (Goal A )). Finally, Section 5 exposes some
remarks on the technical work presented.

2 Logical Framework

In [17] some forms of collective trust are presented, and a perspective on how
these forms of trust can be logically related to the emergence of obligations within
groups of agents are suggested. The starting point is the definition of individual
trust proposed by Castelfranchi and Falcone in [15]. It is argued that the basic
ingredients of trust can be captured within a modal approach; this approach,
which is also widely accepted when collective attitudes are considered, proved
useful in identifying trust settings in multi-agent systems, each corresponding
to a different degree of group confidence. Finally, it is discussed -with special
attention to the legal domain- the relation between collective trust (which is
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a form of trust based on mutual belief and strong delegation of tasks) and the
emergence of normative conventions within groups of agents. The paper provides
evidence that minimal adjustments are required for existing frameworks such as
those in [3] to deal with a theory of common trust and norms; it is shown
that multi-modal frameworks for MAS can be easily extended to cover highly
structured scenarios involving trust.

For working within the framework described, we need a language to talk
about the internal configuration of agents, obligations, and actions. We briefly
outline our standard language in this section.

We use a multi-modal approach for dealing with agents’ attitudes, but inte-
grated by adding agency operators [17]. Hence, we work with a finite set of agents
A = {x, y, z, ...} and a countable set of atomic propositional sentences usually
denoted by P = {p, q, r, ...} . Complex expressions are formed syntactically from
these in the usual inductive way using ⊥ (false) and > (true), standard Boolean
connectives, and the unary modalities we describe next.

We use Goalx A to mean that “agent x has goal A ”, where A is a propo-
sition. Propositions reflect particular state-of-affairs, as in [3]. Intx A is meant
to stand for “agent x has the intention to make A true”. Intentions within the
area of Cooperative Problem Solving (CPS ) are viewed as inspiration for goal-
directed activities. The doxastic modality Belx A represents that “agent x has
the belief that A ”. The Doesx A operator is to be understood in the same
sense given in Elgesem’s account to represent successful agency i.e. “x indeed
brings about that A ” [4]. To simplify technicalities, the logic in [17] assumes
that in expressions like Doesx A no modal operators occur in the scope of the
Does; therefore A denotes any behavioral action concerning a conduct, such as
withdrawal, inform, purchase, payment, etc. We will assume the same restriction
for Section 3, and we will eliminate it for Section 4 for regaining expressiveness.

As classically established, Goal is a Kn operator, while Int and Bel are,
respectively, KDn and KD45n. O is the deontic operator with standard KD
semantics [13]. The logic of Does, instead, is non-normal and it amounts to the
following schemata [4, 9]: Doesx A → A , (Doesx A ∧ Doesx B)→ Doesx(A ∧
B), and ¬Doesx>.

3 The Fibring

Before reorganising the logic in [17] as a fibring, we recall some background
knowledge.

According to Hansson and Gärdenfors [11], a generalization of the traditional
Kripke semantics is as follows. Instead of a collection of worlds connected to
a given world w through a relation R, consider a set of collections of worlds
connected to w. These collections are the neighbourhoods of w. Formally, a Scott-
Montague frame is an ordered pair 〈W,N〉 where W is a set of worlds and N is
a function assigning to each w in W a set of subsets of W (the neighbourhoods
of w). A Scott-Montague model is a triple 〈W,N, V 〉 where 〈W,N〉 is a Scott-
Montague frame and V is a valuation function defined as for Kripke frames,
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except for 2A : it is true at w iff the set of elements of W where A is true is
one of the sets in N(w); i.e. is a neighbourhood of w.

Let us bring in the structure for the MAS in [17]. It is a multi-relational
frame of the form:

F = 〈A,W, {Bi}i∈A, {Gi}i∈A, {Ii}i∈A, {Di}i∈A〉

where:

– A is the finite set of agents;
– W is a set of situations, or points, or possible worlds;
– {Bi}i∈A is a set of accessibility relations wrt Bel, which are transitive, eu-

clidean and serial;
– {Gi}i∈A is a set of accessibility relations wrt Goal, (standard Kn semantics);
– {Ii}i∈A is a set of accessibility relations wrt Int, which are serial; and
– {Di}i∈A is a family of sets of accessibility relations Di wrt Does, which are

pointwise closed under intersection, reflexive and serial [9].

A model based on F is in its turn of the form < F, V >, where V is the corre-
sponding valuation function ([17], Definition 2).

Put this way, it is easy to identify two overlapping “nets” of relations over
the same set W . The first net (or multi-graph) corresponds to “wires” for normal
operators, the second net corresponds to the accessibility relations for the Doesi
modalities.

This definition does not include the O modality. O was incorporated later
in F for dealing with the deontic connotation of an operator of the theory ([17],
Section 4). We will keep it apart in what follows to keep the set of modalities
manageable. We come back to O later with the purpose to showing further
possibilities for combining logics (Section 5).

Following, we can assert two facts based on Definition 4.24 and Theorem 4.22
in [2] (which respectively settle how to construct a canonical model for a normal
logic, and state that a normal modal logic is strongly complete with respect to its
canonical model). First, that the modal similarity type built up from the normal
modalities above has a canonical model; second, that this logic is complete w.r.t.
its canonical model. Let us call N to the logic with signature (Bel, Int, Goal)
above (the normal modalities), hence N is a normal multi-modal multi-agent
logics, which is complete (this proof is available in [1], we also provide it in the
Appendix).

Taking into account Observation 1 and what stated regarding N, and ac-
cording to the definition of fibring given by Finger and Gabbay [6], (see also [7])
the logic in [17] can be seen as a combination of logics where the normal modal
machinery is placed on top of the non-normal logic. The non-normal equipment
is in its turn multi-modal, as there is one Doesi modality for each agent i.

Let us develop this insight.
Consider F as splitted into an outer normal multi-modal frame, and inner

Scott-Montague frames. Graphically:
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Provided this rearrangement, the intuition behind the valuation of wffs within
the system is the following. When we evaluate normal operators (e.g. we parse a
wff ) we navigate through the outer Kripke model. When a Doesi formula at any
given point w is to be evaluated, we navigate through a Scott-Montague model.

The following subsection presents the technical aspects of the fibring.

3.1 Fibring: Syntax and Semantics

Take the logic in [17]. Call N to the restriction of F to its normal part, and call
Does to the restriction of F to its non-normal part. We can safely assume that
Does is a propositional logic [4, 9]. According to the methodology in [7], we parti-
tion the set of formulas in Does into two subsets: Boolean formulas, BDoes, and
monolithic formulas, MDoes. A formula A belongs to BDoes if its outermost op-
erator is a Boolean connective (e.g. Doesx A ∧Doesx B); otherwise it belongs
to MDoes (e.g. Doesx A ). It is clear that there is no intersection among the set
of modalities of N and Does. Call N(Does) to the fibring of Does by means of N.

N(Does): Syntax. Let LDoes denote the language of the logic of agency
(as in Section 2, with no normal modalities and without their syntax formation
rules), and LN denote the language of N (as in Section 2, without the Does
modality and its syntax formation rule). The language LN(Does) of N(Does)

-over the set of proposition letters P - is obtained by replacing the formation rule
of sentences in LN that says “every proposition letter in P is a formula” by the
formation rule:

every monolithic formula in LDoes is a formula

As pointed out in [6], this replacement can be matched with a process called
“fuzzling” or layering: formulas in the base system can be substituted for atoms
of the top system.

To formally outline the semantics for the fibring, we need a reframing of
models based on F in terms of the restricted models.

A model for N(Does) has the structure:
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M = 〈A,W, {Bi}i∈A, {Gi}i∈A, {Ii}i∈A, V
′, {di}i∈A〉 (1)

where:

– A is a finite set of agents;
– W is a set of points, or possible worlds;
– {Bi}i∈A is a set of accessibility relations wrt Bel, which are transitive,
euclidean and serial;

– {Gi}i∈A is a set of accessibility relations wrt Goal;
– {Ii}i∈A is a set of accessibility relations wrt Int, which are serial;
– V ′ is the valuation function V restricted to the normal operators, defined
as follows:

1. standard Boolean conditions;
2. V ′(w,Beli A ) = 1 iff ∀v ∈W (if wBiv then V ′(v,A ) = 1);
3. V ′(w,Goali A ) = 1 iff ∀v ∈W (if wGiv then V ′(v,A ) = 1);
4. V ′(w, Inti A ) = 1 iff ∀v ∈W (if wIiv then V ′(v,A ) = 1); and

– each di is a total function mapping, for each world w in W , for each agent
i, a neighborhood model of the form:

η = 〈W,Di, v〉 (2)

where:
– W is the (same, original) set of worlds,
– Di is a family of sets of accessibility relations Di wrt agency regarding agent
i, which are pointwise closed under intersection, reflexive and serial [9].

– v is V restricted to the non-normal operators. That is, the valuation func-
tion for agency that says that Doesi A holds in w if and only if the set of
worlds where A is true is one of the neighborhoods of w. Formally:

1. standard Boolean conditions;
2. v(w,Doesi A ) = 1 iff ∃Di ∈ Di such that ∀u(wDiu iff v(u,A ) = 1).

Let us call KLDoes to the set of models for LDoes, then di: W → KLDoes.

N(Does): Semantics. Given a model M, given w ∈ W , given V ′ valua-
tion function in M, and given functions di (the fibring itself), the semantics for
N(Does) is obtained by replacing the clause for N that says

M, w |= p iff p ∈ V ′(w), whenever p ∈ P

,
by the clause:

M, w |= A iff di(w) |= A , whenever A ∈ MDoes.

Note here that A has the form Doesi B, as A is a monolithic formula.
Once a formula has entered the “Does component” it can not come back to

the top level [7]. Subsequently, as pointed out in Observation 1, in the present
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layout we can not test the validity of statements such as Doesi(Goalj A ) (which
can be seen as capturing a form of persuasion: “agent i makes agent j have A
as a goal”). We address a possible solution to this drawback in Section 4.

Regarding the notion of fibring used, note that we combine the logics in a
rather plain way: there are no bridging axioms nor intricate interactions among
modal operators. Therefore, soundness and completeness results are applicable
as follows. Fix a finite number of agents to prevent possible infiniteness of the
system. For the normal operators, apply the results in [1](see Appendix); for the
logics of agency, apply [9]. By proceeding this way, we profit from the separate
proofs and properties of each logic, and avoid the embeddings pointed out in
Observation 2.

The logic of Does has the finite model property, i.e. we do not have to bother
about arbitrary infinite models, for we can always find an equivalent finite one
[9]. This opens the door for decidability results and, from a computational point
of view, for the design of model checkers.

3.2 Model Checking

A model checker is a program that solves the model checking problem. The
global model checking problem for N(Does) consists in checking whether, given
a wff ϕ, and given M model for N(Does); there exists a w ∈ W such that
M, w |= ϕ. We follow the modal model checker construction in [7]. Let ϕ be a
formula and let MMLDoes(ϕ) be the set of maximal monolithic subformulas of
ϕ belonging to LDoes. Let ϕ′ be the N-formula obtained by replacing every
subformula α ∈ MMLDoes(ϕ) by a new proposition letter pα. Below are the
sketches of the model-checkers needed to solve the modal checking problem for
N(Does):

Function MCN(Does)((A,W,Bi, Gi, Ii, V
′, {di}), ϕ)

input: a fibred model M and a formula ϕ ∈ LN(Does)
compute MMLDoes(ϕ)
for every α ∈ MMLDoes(ϕ)

i := identify the agent involved in α
for every w ∈W

if(MCDoes(di(w), α) = true) then
V ′(w) := V ′(w)

⋃
{pα} /*fuzzling*/

build up ϕ′ /* systematically replace variables generated above */
return MCN((A,W,Bi, Gi, Ii, V

′, {di}), ϕ′);/*calls to the normal checker*/

Function MCDoes(di(w), α)
input: a Scott-Montague model of structure η and a maximal monolithic sub-formula α.
while there are neighbourhoods unchecked in di(w)
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nk = set ni ∈ di(w) /*nk iterates on the set of neighbourhoods*/
for every w ∈ nk

if α 6∈ v(w) then return false
return true

FunctionMCN((A,W,Bi, Gi, Ii, V
′, di), ϕ

′)
input: a model M = (A,W,Bi, Gi, Ii, V

′, di) and a formula ϕ′

for every w ∈W
if check((A,w,Bi, Gi, Ii, V

′), ϕ′)
return w

returnfalse

Function check((A,w,Bi, Gi, Ii, V
′), α)

case on the form of α
α = pα′ :

if pα′ 6∈ V ′(w)
return false

α = ¬α′ :
if check((A,w,Bi, Gi, Ii, V

′), α′)
return false

α = α1 ∧ α2 :
if not check((A,w,Bi, Gi, Ii, V

′), α1) or not check((A,w,Bi, Gi, Ii, V
′), α2)

return false
α = α1 ∨ α2 :

if not check((A,w,Bi, Gi, Ii, V
′), α1) and not check((A,w,Bi, Gi, Ii, V

′), α2)
return false

α = Beli(α
′) :

for each v such that wBiv
if not check((A, v,Bi, Gi, Ii, V

′), α′)
return false

α = Goali(α
′) :

for each v such that wGiv
if not check((A, v,Bi, Gi, Ii, V

′), α′)
return false

α = Inti(α
′) :

for each v such that wIiv
if not check((A, v,Bi, Gi, Ii, V

′), α′)
return false

others : return false
return true

The procedures should be understood as follows. Given a fibred model and a
formula ϕ, MCN(Does) first computes the set MMLDoes(ϕ) of maximal mono-

lithic sub-formulas of ϕ. For each of these, the checker identifies which agent
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is carrying out the action. Then, the checker establishes the worlds where that
action has been carried out successfully. For doing this, the MCDoes checker is
called with the Scott-Montague model di(w) as parameter (recall di has struc-
ture η). MCDoes is nothing but pseudo-code for the valuation function v, it
tests whether there is a neighborhood of w where α holds. If so, the new letter
pα is added to V ′(w) to register such successful agency. Finally, before calling
the normal model checker MCN, the new formula ϕ′ is built without the Does
modalities; these have been replaced in the former fuzzling.

4 Independent Combination of Mental Aspects and
Visible Actions

Doesi(Goalj A ) is a formula in which the normal modality appears within
the scope of a non-normal Does. Note that, according to our Observation 1, we
can not express this formula in the original system. An independent combination
between a basic temporal and a simple deontic logic for MAS has been recently
depicted in [18]. That combination puts together two normal modal logics: a
temporal one and a deontic one.

Our aim now is to combine the normal and the non-normal counterparts of
F to get a new system where we can write and test the validity of formulas with
arbitrarily interleaved cognitive and agency modalities.

For doing this, let us take a look to F again. Consider it once more as splitted
into two separate substructures: one gathering the normal logics, and another
one gathering the logics of agency. Again, there are two overlapping “nets” of
relations identifiable over the same set W . The former is a Kripke-styled cog-
nitive ontology where goals, beliefs, intentions are interpreted i.e. it captures
internal (mental) motivational and informational aspects of agents (also the de-
ontological aspects of the system, but recall that we keep this apart as a matter
of presentation) the latter is a Scott-Montague structure which captures the
external, visible, behavioral side of agents.

Now to the combination. First, duplicate and subindicate the elements in W
to get one set of situations WN , and another set WD. Now build an ontology
WN ×WD of pairs (wN , wD) representing the intuition this mental configuration
- this conduct. Classically:
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OO

// ·
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Combination. Syntax. Let LN denote the language of N (the base logic
restricted to the normal operators), and LDoes denote the language of the logic
of agency. The language LN×Does is obtained by taking the union of the forma-
tion rules for the combination of LNand LDoes. Unlike the case of LN(Does),

Doesi(Goalj A ) and Goalj(Doesi A ) are both formulas of LN×Does.

Combination. Semantics. Assume that we have two structures: (A, WN ,
{Bi}, {Gi}, {Ii}, V ′, ) and (A,WD, {Di}, v), where to respectively test the valid-
ity of the normal modalities and the non-normal (Does) modalities. The former
is a Kripke model; the latter a Scott-Montague model. Interpret LN×Does for-
mulas over a combined model

C = (A,WN ×WD, {Bi}i∈A, {Gi}i∈A, {Ii}i∈A, {Di}i∈A, V), (3)

where:

– A is the set of agents;
– WN ×WD is a set of pairs of situations;
– {Bi}i∈A, {Gi}i∈A, {Ii}i∈A are the accessibility relations for the normal op-

erators (with semantics as in Section 3);
– {Di}i∈A are the accessibility relations for the agency operators; and
– V : WN ×WD → Pow(P ) is a function assigning to each pair in WN ×WD

the set of proposition letters in P which are true.

The definition of a formula in LN×Does being satisfied in a model C at state
(wN ,wD) amounts to:

C, (wN , wD) |= Beli A iff ∀vN ∈WN ( if wNBvN then C, (vN , wD) |= A ).

C, (wN , wD) |= Goali A iff ∀vN ∈WN ( if wNGvN then C, (vN , wD) |= A ).

C, (wN , wD) |= Inti A iff ∀vN ∈WN ( if wNIvN then C, (vN , wD) |= A ).

C, (wN , wD) |= Doesi A iff there exists a neighborhood n of wD such that

∀v ∈ n (C, (wN , v) |= A ). (4)
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A scan through the combined structure is done according to which operator
is being tested. Normal operators move along the first component (wN ), and
non-normal operators move along the second component of the current world
(wD).

Example. Persuasion. The formula Doesi(Goalj A ) can be seen as a
form of persuasion, meaning that agent i makes agent j have A as goal. How
do we test the validity of such a formula in a world (wN , wD)? The movements
along the multi-graph are determined by C, (wN , wD) |= Doesi (Goalj A ) iff ∃
neighbourhood ni of wD such that ∀vk ∈ ni (C, (wN , vk) |= Goalj A ), which
amounts to test ∀vk ∈ ni( iff ∀uN ∈WN ( if wNGjuN then C, (uN , vk) |= A )).

5 Final Remarks

The Logics and the Code.In this work, the technical manipulation of the
logics involved is a more complicated task than the later construction of the
model checkers for the fibring in (Subsection 3.2). That imperative pseudo-code
is nothing but the iteration over a specific domain with the purpose of verifying
satisfiability. As shown in subsections 1.1 and 1.3 of [2], there is no mathematical
distinction between a modal and a corresponding first order model -both are
relational structures. We naturally used this correspondence to build the pseudo-
code. Let us apply the concepts of subsection 2.4 to sketch the validity of this
ideas. In particular, Definition 2.45 and Proposition 2.47 are of interest here.
The notion of Standard Translation in Definition 2.45 explains how to convert
modal formulas into first-order formulas. Proposition 2.47 [2] provides a first-
order reformulation of the modal satisfaction definition.

The O Modality. We dealt with some of the modalities underlying the trust
theory in [17]. In that work, a deontic connotation for the concept of collective
trust is developed (Section 4). Lawful support to collective trust is guaranteed in
the theory with the schema: (C-trustGy A ) → OG(Doesy A ), which is devised
with a view to reflect the lawful force of trust, relativized to groups. The schema
is to be understood as a standard of (good faith) behavior that can be identified
with reference to social or group norms, to correctness, or reasonableness: if the
group trusts in agent y with respect to A , agent y is obliged to carry out A .

For capturing -in systems as presented here- this deontic connotation of C-
trust, and for dealing with lawful concepts in general, we must consider deontic
modalities such as O and OG. O is the deontic operator for generic obligations,
meaning “it is obligatory that” [16, 13], and OG is a relativized obligation oper-
ator which is meant to stand for “it is obligatory in the interest of G that” (see
e.g. [12]). O has classical KD semantics while the relativized operators have the
accepted KDn semantics. Therefore, correspondingly, extend the N-frame in
Section 1 with the set of accessibility relations O and {Oi}i∈A w.r.t. general and
relativized obligations. It should be clear that this extension needs the extension
of the signature, of the formation rules, and of the valuation function, but also
requires a further completeness proof for the renewed N (we leave this proof
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apart in this paper; nonetheless recall that applicable techniques are as in the
Appendix).

Further fibrings. Theoretically speaking, the very idea of reasoning about
time should extend the MASs in this work and other MASs of similar structure
consistently. From a computational standpoint, a minimal functionality for the
manipulation of time from a basic modal (and linear) perspective involves few
technical adjustments for either combination presented in this paper. For exam-
ple, intuitively, a basic temporalization amounts to place the temporal machinery
on top of the fibred MAS (Section 3.1), just in the same spirit we placed the nor-
mal machinery on top of the non-normal one. Consider the model (T,<, g, t0).
The outer frame (T,<) corresponds to the temporal evolution of the system; t0
in T is the initial point in time. The system evolves through time in the sense
that new groups and generic/individual beliefs, intentions, trust relations, obli-
gations are settled while some others become obsolete. In its turn, g is the total
function that brings in a model M for each point in time.

A Completeness proof for N

In this appendix, a completeness proof is given for the restriction N. The
method used is often applied in modal logic for proving completeness with re-
spect to finite models; is in turn inspired by the completeness proofs of mutual
intentions shown by Dunnin-Keplicz and Verbrugge in [3]. In fact, we adapt
that to N, and apply Definition 4.24 and Theorem 4.22 described in [2]; these
respectively settle how to construct a canonical model for a normal logic, and
state that a normal modal logic is strongly complete with respect to its canonical
model.

We have to prove that, supposing that N 6` ϕ, there is a model MN and a
w ∈MN such that MN, w 6|= ϕ. The proof has four steps:

Step 1. Closure. Construct a finite set of formulas Φ called the closure of
ϕ. Φ contains ϕ and all its sub-formulas, plus certain other formulas that are
needed in Step 4 below to show than an appropriate valuation falsifying ϕ at a
certain world can be defined. The set Φ is also closed under single negations.

The closure of ϕ with respect to N is the minimal set Φ of N-formulas such
that, for every agent, the following hold:

1. ϕ ∈ Φ.
2. If ψ ∈ Φ and χ is a sub-formula of ψ, then χ ∈ Φ;
3. If ψ ∈ Φ and Φ itself is not a negation, then ¬ψ ∈ Φ;
4. If M -INTG(ψ) ∈ Φ then E-INTG(ψ ∧M -INTG(ψ)) ∈ Φ;
5. If E-INTG(ψ) ∈ Φ then INT (i, ψ) ∈ Φ for all i ∈ G;
6. ¬INT (i,⊥) ∈ Φ for all i ≤ m;
7. If C-BELG(ψ) ∈ Φ then E-BELG(ψ ∧ C-BELG(ψ)) ∈ Φ;
8. If E-BELG(ψ) ∈ Φ then BEL(i, ψ) ∈ Φ for all i ∈ G;
9. ¬BEL(i,⊥) ∈ Φ for all i ≤ m;
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10. ¬GOAL(i,⊥) ∈ Φ for all i ≤ m.

It should be clean that for every formula φ, Φ is a finite set of formulas (recall
that the language in [17] includes: M -INT , E-INT , C-BEL, E-BEL) 3.

Step 2. Canonical model. To construct a canonical model we need to
define the worlds and relations between them. Each of these worlds are maximally
N-consistent sets. To build this sets, we apply the Lindenbaum Lemma (which
is proved in Lemma 4.17 [2]) over Φ step 1, as follows:

Let Φ be the closure of φ with respect to N. If Γ ⊆ Φ is N-consistent, then
there is a set Γ ′ ⊇ Γ which is maximally N-consistent in Φ.

Step 3. Build a canonical model using Definition 4.24 [2]. This model will
turn out to contain a world where ¬ψ holds.
Let Mϕ =< Sφ, π, I1, ..., Im, B1, ..., Bm, G1, ..., Gm > be the Kripke model de-
fined as follows:

– As domain of states, one state sΓ is defined for each maximally N-consistent
Γ ⊆ Φ. Note that, because Φ is finite, there are only finitely many states.
Formally, we defined CONΦ = {Γ |Γ is maximally N-consistent in Φ} and
Sϕ = {sΓ |Γ ∈ CONΦ}.

– To make a truth assignment π, we want to conform to the propositional
atoms that are contained in the maximally consistent sets corresponding to
each world. Thus we define π(sΓ )(p) = 1 if and only if p ∈ Γ . Note that this
makes all propositional atoms that do not occur in ϕ false in every world of
the model.

– The corresponding relations are defined as follows:

Ii = {(sΓ , s4)|ψ ∈ 4 for all ψ such that INTi(ψ) ∈ Γ}

Bi = {(sΓ , s4)|ψ ∈ 4 for all ψ such that BELi(ψ) ∈ Γ}

Gi = {(sΓ , s4)|ψ ∈ 4 for all ψ such that GOALi(ψ) ∈ Γ}

It will turn out that with this definition we get Mϕ, sΓ |= p iff p ∈ Γ for
propositional atoms p.

Step 4. Completeness of N. If N 6` ϕ then there is a model M and a w such
that M, w 6|= ϕ. Proof: Suppose N 6` ϕ. Take Mϕ as in step 3. Note that there
is a formula χ logically equivalent to ¬ϕ that is an element of Φ; if ϕ does not
start with a negation, χ is the formula ¬ϕ itself. Now, using the Lindenbaum
Lemma, there is a maximally consistent set Γ ⊆ Φ such that χ ∈ Γ . By the
Finite Truth Lemma, if Γ ∈ CONΦ then for all ψ ∈ Φ it holds that Mϕ, sΓ |= ψ
iff ψ ∈ Γ . Thus, this implies that Mϕ, sΓ |= χ, thus Mϕ, sΓ 6|= ϕ. Details of the
Finite Truth Lemma proof are left to the reader (see [3] and [2], Lemma 4.21).

3 The collective operators M -INT , E-INT , C-BEL, E-BEL are defined using the
uni-agent modalities INT and BEL [3].
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