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Abstract 
As a common laboratory practice, rats are studied as biological models for understanding human physiology. 
Even though, with the advent of modern computer sciences, new methodologies appeared in medical sciences 
like simulation and optimization to simplify and improve the experimental work. With this background, a 
novel simulation model of the endocrine system of Sprague Dawley rats is presented. It is a simplified 
mathematical model composed of 3 differential equations and 8 parameters that have been determined and 
validated with experimental measures of plasma glucose and insulin alone by means of calculus and 
optimization techniques. The results presented here are a step before the development of a type I diabetic 
model of Sprague Dawley rats.  
 
Keywords: Mathematical modeling, Diabetes Mellitus, In silico rat, Experimental Data 
 
Introduction 
Glucose homeostasis is a complex mechanism involving endocrine, autocrine, paracrine 
and metabolic factors. The result of this homeostatic process is the constancy of the plasma 
glucose concentration or its variation within very narrow limits, even in states of intake or 
deprivation of food. This adjusted response is due to the action of hormones such as insulin 
or glucagon, which could be considered the main effectors of the system. The following 
diagram (Figure 1) simplifies some of the factors involved in glucose homeostasis. 
 

 
Figure 1: some factors involved in glucose homeostasis. 
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A detailed study of this issue requires the intervention of mathematical modeling processes 
that could characterize the system in a quantitative manner and measures of the biological 
variables involved in the homeostatic system. During the past 40 years it has been 
developed numerous mathematical models of glucose homeostasis of human beings for 
different purposes in the field of diabetes mellitus [1,2,3,4], for example: education, to 
estimate insulin sensitivity, for the development of new drugs, etc. More recently, the race 
to obtain an artificial pancreas has stimulated the appearance of a kind of models aimed at 
accelerating the design of glucose control algorithms. One of the main characteristics of 
this type of simulation models is that they should be able to represent, where possible, the 
intra and inter-patient variability of the key metabolic parameters in the general population 
of subjects with type I diabetes mellitus. A possible use of these types of models can be 
seen in Campetelli et al [5] where a Predictive Functional Control algorithm was applied. 
There are many mathematical models that describe the insulin-glucose interaction of the 
endocrine system. The Sorensen [1] model belongs to the class of complex physiologically 
based compartment models. The model divides the body into six physiologic 
compartments: (1) the brain representing the central nervous system, (2) the heart and the 
lung, which represent the rapidly mixing volumes of the heart, the lung and the arteries, (3) 
the periphery, which includes the skeletal muscle and adipose tissue, (4) the gut, (5) the 
liver and (6) the kidneys. Glucose and insulin subsystems are considered separately, with 
coupling through metabolic effects. This model was originally developed to represent a 
healthy subject utilizing 22 nonlinear differential equations including 3 equations to 
describe the endogenous insulin secretion. To simulate a subject with type 1 diabetes, the 
insulin secretion term is omitted resulting in a model comprising 19 differential equations 
and 44 parameters. The parameter values were derived from the literature and hence could 
only represent a nominal ‘average’ virtual subject with type 1 diabetes. As all the 
parameters of this model are time-invariant the model fails to represent the within subject 
variability. 
Fabietti et al [2] developed a model of the insulin and glucose dynamics in type 1 diabetes 
to facilitate the design and evaluation of control algorithms for an external artificial 
pancreas using the subcutaneous route. The model is based on the Bergman’s minimal 
model. The endogenous insulin secretion is substituted by subcutaneously delivered 
exogenous insulin and the glucose kinetics is represented by two instead of a single 
compartment. External inputs of the model such as meals and intravenous glucose boluses 
have been added together with the submodel of the glucose absorption from the 
gastrointestinal tract. An interesting feature of the model is the sinusoidal representation of 
the circadian variability of insulin sensitivity. The amplitude and phase of the circadian 
rhythm are estimated ‘off-line’ to characterize an individual subject. Another 4 out of 14 
model parameters are estimated from clinical data. These include insulin sensitivity, a 
constant related to the plasma insulin distribution volume and a time constant of the insulin 
diffusion in the plasma and the remote insulin compartments. Most of the remaining 
parameters are obtained from the literature or by fitting published data. 
The Hovorka [3] model includes two submodels of subcutaneous insulin and subcutaneous 
glucose kinetics as well as a two-compartment model of the glucose absorption from the 
gastrointestinal tract. In total, the model is composed of 9 ordinary differential equations 
and 15 free parameters. An important property of this simulation environment is its ability 
to represent between and within subject variability. The between subject variability is 
represented by a population of 18 virtual subjects with type 1 diabetes. The model 
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parameters were obtained either from clinical studies in subjects with type 1 diabetes or 
from population probability distributions. The within subject variability of the 
glucoregulatory system was implemented by superimposing sinusoidal oscillations on a 
subset of model parameters. A possible weakness of Hovorka virtual patient model is its 
simple representation of glucose absorption from the gut which may need to be refined. 
Dalla Man et al [4] developed a meal-simulation model of glucose–insulin system utilizing 
data collected in 204 normal subjects who underwent a triple tracer meal protocol. The 
application of glucose tracers allowed glucose and insulin fluxes during a meal to be 
calculated. The simulation model is made up of several parsimonious submodels. These 
unit process models were identified from average data with a forcing function strategy; 35 
parameters of the normal subject were estimated. The same strategy was applied to a 
smaller database containing 14 subjects with type 2 diabetes and the same number of 
parameters for subjects with type 2 diabetes was estimated. This model is also known as 
UVa Simulator and has been approved by the FDA in 2008 as a substitute to animal trials 
in the pre-clinical testing of closed-loop control algorithms [6]. The full model consists of 
300 patients with type 1 diabetes. Thanks to models like this one, which contemplate inter-
patient variations, a controllability index to preview the possibility of a type 1 diabetic 
patient to use an artificial pancreas could be done [7]. 
In diabetic animals the only model available is the Type 1 Diabetes PhysioLab® developed 
by Entelos in collaboration with the ADA (American Diabetes Association). It is a very 
detailed and complex computer model (cell level) of the progression of type 1 diabetes in 
the NOD mouse. The authors have been working with these types of models. In one 
occasion [8], the Dalla Man model was adjusted to type 1 diabetic rats using experimental 
data from the laboratory. Another use of models like these could be to test in silico fault 
detection systems applied to erroneous blood glucose measurements using specific 
biosensors [9]. 
The main disadvantages of the models mentioned lies in the large number of parameters 
and the complex metabolic studies that should be performed to know them, which forces to 
work with average values of many of them, taking away the validity of the results and the 
applicability of these models.  
After facing the difficulties of dealing with large mathematical models with lots of 
parameters not easily obtainable, the authors of this paper proposes a new model whose 
strength lies in the possibility of obtaining the value of each parameter for each rat under 
study, regardless of the use of average values or values obtained with other animals. This 
model simulates experimental situations very well and has shown that its parameters 
change in a predictable way from the action of known effectors. 
 
Materials and Methods 
The proposed model consists of 3 differential equations that arise from the mass balance of 
plasma glucose and insulin, considering as disturbing factors the intake of glucose through 
a diet, the insulin dependent and independent consumption of glucose by the tissues, the 
hepatic handling and the urinary excretion of glucose. It has only been considered the 
pancreatic contribution of insulin and its half disappearance by its action on the target 
tissues.  
This rises the following biological model (Figure 2), where the solid lines represent flow of 
glucose or insulin and the dotted lines the stimulatory (     ) or inhibitory (     ) effect.  
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Figure 2: New minimal biological model proposed. 

 
From the biological model proposed the following system of two differential equations can 
be written: 
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Where G: plasma glucose concentration (mg/dl), I: plasma insulin concentration (pmol/l), 
D0: total amount of ingested glucose (mg), D: total amount of glucose in the gastrointestinal 
tract (mg), k0: plasma glucose incorporation after an intake constant (dl-1 min-1), k1: 
pancreatic insulin production rate constant ((pmol/l)/(min.mg/dl)), k2: insulin dependent 
glucose utilization by the tissues rate constant (mg/dl)/(min pmo/l), k3: insulin independent 
glucose utilization by the tissues rate constant (min-1mg/dl), k4: uptake (glucogenogenesis) 
or production of glucose (by glucogenolisis &/or gluconeogénesis) by the liver rate 
constant (mg/dl)/(min pmo/l), k5: glucose renal depuration rate constant (min-1), k6: insulin 
depuration rate constant (min-1),  Gu: glucose threshold, is the plasma glucose concentration 
at which the renal excretion begins (mg/dl).  
The term k1G represents the pancreatic insulin secretion, which is regulated by the amount 
of glucose in plasma; k6I reflects the disappearance of plasma insulin by its action on the 
target tissues; k4(I-Ipi) corresponds to the glucose hepatic handling, being a positive term 
when insulin level is low (I<Ipi) indicating the contribution of plasma glucose due to 
glycogenolysis and gluconeogenesis and negative when it is high (I>Ipi) indicating the 
uptake of glucose by the liver for glycogenesis. The term k5(G-Gu) represents the urinary 
excretion of glucose. The term k3 is the insulin independent glucose uptake and k2I is the 
insulin dependent glucose uptake by the tissues. Finally, the term k0D represents the 
glucose incorporated by the diet. 
After a dose (D0), glucose reaches the gastrointestinal tract (GIT) where the quantity (D) 
decreases by its absorption and enters plasma (G). In Figure 3 this process is shown were ke 
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symbolizes all the processes that consume glucose and ka the intestinal absorption of 
glucose. 
 

 
Figure 3: block diagram representation of a meal intake. 

 
D is a function of time and the gastrointestinal absorption (represented by ka). Assuming 
that the variation of D as a function of t is of first order, then: 
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Applying this model to normal individuals the urinary excretion of glucose is zero for 
which the term represented by k5 disappears (the blood glucose is below the threshold Gu) 
resulting in: 
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Animals 
For the laboratory experiments female Sprague Dawley rats were used following the 
procedures of Rigalli et al [10]. The reason for the use of females lies in the ease of the 
procedure for obtaining samples of urine by urethral catheterization. The animals were 
housed in collective cages (4 to 5 animals per cage) with water and balanced food (Gepsa, 
Argentina) ad libitum in the animal facilities of the laboratory. During the experiments, rats 
were in a temperature-controlled environment at 23-25 ºC, with light-dark cycle 12hr-12hr 
and filtered airflow at time intervals scheduled. The animals were treated according to 
accepted international standards for animal handling [11]. In the choosing of models and 
the number of animals will follow the principle of the 3Rs of Russel and Burch [12]. 
 
Oral Glucose Tolerance Test (OGTT) 
 
In animals fasting at least 8 hours blood samples were taken at different times after an oral 
administration of glucose (0.6 gr. of glucose per 100 gr of body weight) via orogastric tube. 
 
Glucose Measurement 
 
Laboratory determinations of blood glucose were performed using a Perkin Elmer Lambda 
11 spectrophotometer with software PECCS on plasma or urine samples using a 
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commercial kit (Glucose AA, Wiener Laboratories, Rosario) based on the reaction of the 
enzyme glucose oxidase. 
 

 
Figure 4: glucose measurements after an OGTT. 

 
Insulin Measurement 
 
The measurement of plasma insulin concentration was performed using a solid scintillation 
counter Alfanuclear CMOS model using a radioimmunoassay kit specific for rat insulin 
(Rat insulin Millipore, USA). The test is based on the competition between an insulin 
sample marked with 125I by specific antibodies against rat insulin. Insulin concentration 
was measured only in those experiments where the data was strictly necessary. The 
handling of radioactive material was performed according to the standards established by 
the Nuclear Regulatory Authority of Argentina (ARN 10.1.1. radiation safety standard).  
 

 
Figure 5: insulin measurements after an OGTT. 

 
 
 
Parameter Estimation 
 
For the parameter estimation a series of approximations and assumptions were used to 
adjust different functions in different regions of the glucose curve vs. time. 
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Estimation of ka and k0 
 
In a fasting animal that eat a given amount of glucose (D0), at times close to the moment of 
the intake those processes that consume glucose are negligible with respect to the entry of 
glucose into plasma. Therefore, the terms that include k2, k3 and k4 can be eliminated. This 
approach is supported by the significant increase in plasma glucose concentration. 
According to this simplification, Equation (5) representing the variation of plasma glucose, 
is reduced to the following: 
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This is a linear differential equation of first order which could be solved explicitly. So, an 
equation that represents the plasma glucose concentration versus time, for times close to the 
administration of glucose is obtained: 
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Using this equation to adjust the blood glucose levels measured in the first 3 samples k0 can 
be obtained, since ka is a known value determined by the residuals method [13] and D0 is a 
known value. Ga is basal glucose (blood glucose level at time 0). 
 
Estimation of Ipi 
 
Once glucose reaches its maximum value (Gmg) its decline to reach fasting values again 
responds to an exponential function of the type: 
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where B is a constant whose initial value is adjusted to 10. Here, tpi (the time at which an 
inflection point is produced in the curve glycaemia vs. Time) could be obtained. 
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Figure 6: Graphical representation of some values. 

 
The values of Ga and Gmg should be fixed. Ga is the basal value, measured at the beginning 
of the experiment. Gmg should be determined by adjusting a second order polynomial near 
the peak to reduce the error. In Figure 6 the meaning of the values mentioned before is 
shown. 
Once tpi is known, an estimation of Ipi could be done. To do so, the data of insulin from its 
maximum value (Imi) onwards should be adjusted with the following exponential equation: 
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Estimation of k1 
 
Near time zero, the process of insulin depuration with respect to secretion is negligible. So 
from Equation (4): 
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Using this function at times close to the glucose intake, k1 could be obtained.  
 
Estimation of k2 and k3 
 
At t=tpi, G=Gpi, I=Ipi and D(t)=0. So from Equation (5): 
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Using the computer software Prisma, with the values of Ga, Gmg, B and tpi a curve and a 
data table could be obtained, which will allow us to compute the derivative of G at two 
different times close to tpi. 
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Estimation of k4 
 
Prolonged fasting blood glucose is constant so dG/dt=0, D=0, the insulin dependent glucose 
utilization (k2I(t)) is nearly 0, and therefore from Equation (5): 
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Estimation of k6 
 
Finally, when insulinemia is at its maximum (Imi), G=Gmi and dI/dt=0, so from Equation (4) 
we have: 
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Results 
 
Even though this methodology has been validated with many rats, in this work to determine 
the model parameters the methodology will be applied to one Sprague Dawley rat. After an 
oral glucose tolerance test with an intake of 1400 mg of glucose, plasma glucose and 
insulin measurements are shown in Table 1: 
 
 

t [min] G[mg/dl] I[pmol/l] 
0.00 115.20 111.03 
5.00 126.80 132.30 
10.00 141.80 71.33 
15.00 157.30 152.01 
30.00 271.00 261.79 
60.00 244.60 119.20 
90.00 200.00 67.91 

120.00 148.20 82.66 
180.00 149.80 156.65 
240.00 86.30 40.08 
300.00 103.20 117.00 
360.00 94.90 53.69 

Table 1: experimental measurements of glucose and insulin. 
 
With this data, the values explained in Figure 6 were calculated and their results are shown 
in Table 2: 

Gmg 254.2507 
tmg 62.02247 
tpi 99.98 
Imi 190.4072 
tmi 41.53846 
Gmi 91.0389599 

Table 2: values used to estimate some model parameters. 
 
Using this data, parameters were calculated as shown in the previous section. With these 
estimations as initial values, an optimization algorithm was finally applied to refine the 
fitting of the data. In Table 3 the values of the parameters with these approaches can be 
seen. To perform the optimization, the Matlab toolbox Diffpar was used. In Figure 7 the 
result of the optimization is shown. 
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Parameters Estimated Optimized 
k1 0.1774 0.1774 
k2 2.36E-02 1.89E-04 
k3 3.4228 0.4783 
k4 0.0643 0.03432 
ka 0.0265 0.0265 
k6 0.2303 0.2606 
k0 0.00012 0.0072 

Ipi(pmol/l) 68.82 
Ia(pmol/l) 111.03 
Ga(mg/dl) 115.2 
Do(mg) 1400 

Table 3: Model parameters. 
 
 

 
Figure 7: Model parameters fitting using Matlab. 

 
Discussion 
In view of the difficulties of obtaining detailed mathematical physiological models of the 
endocrine system, which requires measurements of tracers and drugs that need specific and 
expensive equipments, the availability of simpler models easily obtainable in any 
laboratory is of prime necessity, mainly for developing countries.  In this paper a unique 
mathematical model of the endocrine system of normal rats has been presented. It is based 
on experimental data and showed good agreement when simulating with computers. To 
make a comparison with the complex mathematical model used before by the authors [8], it 
is worth mentioning that the number of parameters in that case was 30 in contrast to 7 in 
this new model. In future, the modifications to contemplate the responses of diabetic rats 
will be studied. It will be very useful to help scientists accelerate the development of an 
artificial pancreas for everyday use in humans. 
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