
MINIX 3: Local Bindery Service

Pablo Andrés Pessolani

Departamento de Sistemas de Información - Facultad Regional Santa Fe

Universidad Tecnológica Nacional - Santa Fe – Argentina

ppessolani@frsf.utn.edu.ar

Abstract. MINIX 3 is an open-source operating system designed to be highly

reliable, flexible, and secure. The kernel is small and user processes, specialized

servers and device drivers runs as user-mode isolated processes. MINIX uses

message transfers paradigm to communicate user processes, servers, and device

drivers. System Calls use Interprocess Communication (IPC) primitives to send

messages requesting services from the Process Manager Server (PM) or the File

System Server (FS), and to wait for reply messages. The request messages refer

to destination processes with fixed endpoint numbers for each server. MINIX 3

kernel could use a Local Bindery Service to get the endpoint number of a

desired service, therefore System Calls could be provided by processes other

than FS or MM, without changes in the user’s program source code. This article

describes that problem, presents a solution approach, and sketches kernel source

code changes as a proof of concept.

Keywords: Operating System, microkernel, IPC, message transfer.

1. Introduction

MINIX [1] is a complete, time-sharing, multitasking Operating System (OS)

developed from scratch by Andrew S. Tanenbaum. It is a general-purpose OS broadly

used in Computer Science degree courses.

Though it is copyrighted, the source has become widely available for universities

for studying and research. Its main features are:

• Microkernel based: Provides process management and scheduling, basic memory

management, IPC, interrupt processing and low level Input/Output (I/O) support.

• Multilayer system: Allows modular and clear implementation of new features.

• Client/Server model: All system services and device drivers are implemented as

server processes with their own execution environment.

• Message Transfer Interprocess Communications (IPC): Used for process

synchronization and data sharing.

• Interrupt hiding: Interrupts are converted into message transfers.

MINIX 3 is a new open-source operating system [2] designed to be highly reliable,

flexible, and secure. It is loosely based somewhat on previous versions of MINIX, but

is fundamentally different in many key ways. MINIX 1 and 2 were intended as

teaching tools; MINIX 3 adds the new goal of being usable as a serious system for

applications requiring high reliability.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 1

MINIX 3 kernel is very small (about 5000 lines of source code) and it is the only

code that runs under kernel privilege level. User processes, system servers including

device drivers are isolated one from another running with lower privileges (Figure 1).

These features and other aspects greatly enhance system reliability [3]. This model

can be characterized as a multiserver operating system.

Figure 1: The Internal Structure of MINIX 3 [From [4]]

System Calls are implemented using message transfers (sendrec) packaging

arguments and results in the same way as RPC does as it is shown in the next source

code:
PUBLIC int _syscall(who, syscallnr, msgptr)
int who; /* destination server i.e. PM or FS */
int syscallnr;
register message *msgptr;
{
 int status;
 msgptr->m_type = syscallnr; /* System Call number */
 status = _sendrec(who, msgptr); /* Request&Reply */
 if (status != 0) {msgptr->m_type = status; }
 if (msgptr->m_type < 0) {errno = -msgptr->m_type;
 return(-1); }
 return(msgptr->m_type);
}
MM (from the deprecated name Memory Manager) is defined as a constant:
#define MM PM_PROC_NR
#define PM_PROC_NR 0 /* process manager */

A POSIX System Call like getpid() is implemented sending a GETPID request to

the MM (an alias of PM) and waiting for the reply from the server as it is shown in

the next source code:

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 2

PUBLIC pid_t getpid()
{
 message m;
 return(_syscall(MM, GETPID, &m));
}
The destination process is hard coded into the System Call as a constant restricting

that POSIX and other MINIX System Calls only can be served by PM or FS Servers.

The problem was described by Andrew Tanenbaum:

“Currently FS_PROC_NR is defined as a hard constant (1). Instead, it could be a

per-process entry in the process table, so when a process sent a message to 1, this

would tell the kernel to look up the real number in the process table. This would mean

every process could have its "own" file server. Same for PM_PROC_NR. For a

specific process, the number of the "File Server" could be a user-level gateway

process that had a permanent TCP connection to a remote server. The command that

the user sent would then be forwarded to gateway locally and from there it would be

forwarded to the remote machine and executed there. That would allow using remote

file systems. On the remote machine would be another gateway process that did the

work and marshalled and returned the answer….”

Another limiting issue came up when a system programmer needs to add a new

System Call. He/she must change several source files and must recompile the kernel,

FS and PM servers, and the system must be restarted for the changes to work out.

The development and testing of some interesting features as, remote process

execution, multiple file systems support, multiple processing environments,

transparent proxy and gateway servers, a security reference monitor, System Call

profiling, etc. would be simplified if a System Call message transfer would be served

up by a assigned server in a dynamic way.

This article is about the use of a Bindery Server to resolve the endpoints of

processes serving System Calls requests. This approach provides:

− Flexibility: System programmers would add new System Calls easily or replace

existing ones.

− Reliability: A failed server would be replacing by other operational server.

− Performance: Multiple servers can concurrently provide the same service.

− Dynamism: A server can be (re)started at any time and client processes can use its

services later without reboot.

The proposed approach of local System Calls binding can be extended to other

operating systems offering similar properties.

The rest of this article is organized as follows. Section 2 is an overview of MINIX

3 System Calls implementation. Section 3 describes the operation of the proposed

Local Bindery Service for System Calls. Section 4 refers to the auxiliary bfork()

System Call; Section 5 sketchs a description of the Bindery Server services. Finally,

Section 6 presents conclusions. As the source code is presented as a proof of concept,

it must be clear that it is not a definite and refined version of MINIX 3.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 3

2. Overview Minix 3 System Calls Implementation

All processes in MINIX 3 can communicate using the following IPC primitives:

− send(): to send a message to a process.

− receive(): to receive a message from a specified process or from any process.

− sendrec(): to send a request message and to receive a reply from a process.

− notify(): a non blocking send of special message type.

Those primitives are implemented as CPU traps that change the processor from

User-mode to Kernel-mode.

As it was mentioned in the previous section, MINIX uses message transfers to

implement System Calls. The destinations of the request messages are the PM server

or the FS server. MINIX kernel has a Process Table to keep the attributes of each

process. The FS and PM have their own versions of the Process Table with fields for

attributes that they need. The kernel proc data structure has two fields to identify a

process:
proc_nr_t p_nr; /* number of this process */
int p_endpoint; /* endpoint number */

The p_nr field is the index of the entry in the kernel Process Table minus

NR_TASKS, therefore, the first process in the table (proc[0]) has p_nr = (-

NR_TASKS).

The endpoint field is a combination of the p_nr field and the generation of the

Process Table slot. Each slot has a generation number that counts the use of it. Each

time a process uses the slot, the generation count is increased. This trick avoids that

the process that is using the same slot of other terminated process can receive

messages addressed to the dead process.

The kernel implements IPC primitives using a function with the confusing name

sys_call() defined as follow:
PUBLIC int sys_call(call_nr, src_dst_e, m_ptr, bit_map)
int call_nr; /* system call number and flags */
int src_dst_e; /* src to rcve from or dst to sendto */
message *m_ptr; /* ptr to msg in the caller's space */
long bit_map; /* notification event set or flags */
The parameter call_nr really is the code number of an IPC primitive (the defined

constants SEND, RECEIVE, SENDREC, NOTIFY, ECHO) not the code number of

upper level System Calls (as OPEN, FORK, KILL, etc). The parameter src_dst_e is

the endpoint number of the source/destination process. The other parameters are

commented in the source code.

3. Local Bindery Service For System Calls

The Local Binder Service refers to resolve System Calls server endpoint numbers

through a Bindery Server as RPC binder [5] does for network services.

The Local Binder Server (or BS) can be started after the system startup. At its

initialization, it sets up its System Call database (named Global EndPoint Table or

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 4

GEPT) with the endpoints of PM and FS, then it waits for server registrations or client

requests.

The following sequence describes the steps of System Calls dynamic bindery:

− Once a new server (i.e. GS: Generic Server) is ready to offer its services, it must

register them with the BS (message 1 in Figure 2).

− If a user process invokes a System Call provided by the GS, it searches its Local

EndPoint Table (LEPT) for the endpoint of that service number.

− The first time the process request that service it will not find it in its LEPT (the

special endpoint number NONE is returned), therefore the process must request

BS to resolve the endpoint number (message 2 in Figure 2).

− BS looks up the GEPT for the requested service. If the service and version match,

BS responds to the process with GS’s endpoint number (message 3 in Figure 2).

− The client process saves the endpoint of the GS into the requested service entry of

its LEPT, and then invokes the System Call provided by GS (message 4 in Figure

2).

Figure 2: System Calls Dynamic Bindery

Message 2 and 3, occurs only first time of every System Call used by the process

because the LEPT acts as a cache of endpoints.

3.1. Data Structures

Each process has a cache of service endpoints (LEPT). It has the following C data

structure.
typedef int endpoint_t; /* endpoint number*/
There are SERVICE_VERSION numbers of possible versions for each service.

The database of service endpoints in BS is the GETP. It has the following C data

structure.
typedef int endpoint_t; /* endpoint number*/
/* The Global EndPoint Table (GEPT) entry structure*/
typedef struct {
 char svc_name[M3_STRING];/ * service name */
 endpoint_t svr_ep[SERVICE_VERSION]; /* Endpoint*/

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 5

} gepte_t;

The BS has an auxiliary table named std_sct (Standard System Call Table) with the

following C data structure:
/* Definition of the System Call Table */
typedef struct {
 char sc_name[M3_STRING];/* service */
 endpoint_t sc_ep;/* Endpoint*/
 int sc_nbr;/* syscall number */
} sctable_t;

The std_sct is statically filled with the names of the POSIX services, the endpoints

of the servers (MM/PM or FS), and the System Call numbers.
#define POSIXCALLS 65
sctable_t std_sct[POSIXCALLS] = {
 {"_exit", MM, EXIT},
 {"access", FS, ACCESS},
……
 {"getgid" ,MM, GETGID},
….
A new field named p_version was added to the kernel’s process descriptor data

structure to store the System Call version number that each process will use.
struct proc {
…
 int p_endpoint; /* endpoint number */
#ifdef LCLBIND
 int p_version;/* system call version*/
#endif
…
};

3.2. Data Structures Initialization

The BS initializes the GEPT in two steps:

1. Resets all elements of the table with the special value NONE for service

endpoint, pointing out that this entry is void.

2. Sets the entries corresponding to POSIX services with the endpoints of FS and

PM in accordance with the standard MINIX System Calls extracted from the

std_sct table. The version number is set to 0 for standard services.
PRIVATE void initgept()
{
 int i, j;
/* fill the GEPT with the special value NONE for all */
/* tables and versions */
 for (i = 0 ; i < GEPTSIZE; i++) {
 strncpy(gept[i].svc_name,"no_service",M3_STRING-1);
 for (j = 0 ; j < SERVICE_VERSION; j++)
 gept[i].svr_ep[j] = NONE;
 }

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 6

/* fill the table for version 0 with the endpoints of*/
/* PM and FS servers for posix system calls */
 for (i = 0 ; i < POSIXCALLS; i++) {
 j = std_sct[i].sc_nbr;
 gept[j].svr_ep[0] = std_sct[i].sc_ep;
 strncpy(gept[j].svc_name,
 std_sct[i].sc_name,M3_STRING-1);
 }
}
The GEPT is initiated with the endpoints of PM and FS for version 0 and the

special value NONE for the endpoints of other versions as shown in Table 1.
Table 1: Global EndPoint Table – GEPT

Service Name Version 0 Version 1 Version 2 Version 3 ….

_exit PM endpoint NONE NONE NONE ….

access FS endpoint NONE NONE NONE ….

….. ….. ….. ….. ….. ….

The Dynamic Bindery approach requires changes in System Calls Library

functions therefore, all programs that will use the bindery services must be linked

with the modified C library libc.a.

The C run-time start-off routine crtso was modified to call an LEPT initialization

function named initlept() before calling main() function.
push eax ! push argc
call _initlept !INIT LOCAL ENDPOINT TABLE
 ……
call _main ! main(argc, argv, envp)

Every process linked with the modified libc.a library will has a LEPT to keep the

endpoint numbers of each service and a global variable named bind_ep that it will

store the endpoint number of BIND.

The initlept() function initialize the GEPT and bind_ep as follows:

1. Resets all elements of the table with the special value NONE for service endpoint,

pointing out that this entry is void.

2. Request the PM for the endpoint of BS using the getprocnr() System Call and store

it in bind_ep global variable.
endpoint_t lept[LEPTSIZE];
int bind_ep;
void initlept(void)
{
 int i, retcode;
 message m;
 char bindname[]="bind";
/* fill the LEPT with the special value NONE */
 for (i = 0 ; i<LEPTSIZE; i++)
 lept[i]=NONE;
/* Request the PM for the endpoint of BS */
 m.m1_p1 = bindname; /* name of the wanted process */
 m.m1_i1 = -1; /* lookup by name */

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 7

 m.m1_i2 = 5; /* string length */
 if (_syscall(MM,GETPROCNR,&m) < 0)
 bind_ep=NONE;
 else
 bind_ep=m.m1_i1;
}

The p_version field is initialized on boot by the main() kernel function.
for (rp = BEG_PROC_ADDR, i = -NR_TASKS;
 rp < END_PROC_ADDR; ++rp, ++i) {
 rp->p_rts_flags = SLOT_FREE;/* init free slot */
 rp->p_nr = i; /* proc number from ptr */
 rp->p_endpoint = _ENDPOINT(0, rp->p_nr);
 (pproc_addr + NR_TASKS)[i] = rp;
#ifdef LCLBIND
 rp->p_version = 0;
#endif
}
When a process forks, the p_version must be inherited by the child process.

 #ifdef LCLBIND /* rpc points to child’s proc struct */
 /* rpp pointes to parent’s proc struct */

 rpc->p_version=rpp->p_version;/*from parent to child */
 #endif /* LCLBIND */

4. The bfork() System Call

An alternative version of the fork() System Call named bfork() was created to set

the p_version field of a child process. The bfork() System Call has the following

format:
 pid_t bfork(int version)

The parameter version is the value to store in the p_version field of the kernel proc

data structure of the child process.

The bfork() System Call invokes:

1. sys_fork(): to create the new (child) process and to get its PID.

2. sys_setpver(): A new Kernel Call that sets the p_version field of the process to the

value specified in the version parameter.

4.1. System Task Services

Two new Kernel Calls was added to System Task process (named SYSTASK that

it is a process that share address space with the kernel):

• Set Process System Call Version (SETPVER): Set the version number that the

process will use on each System Call. The function do_setpver() of SYSTASK is

used by bfork() to set the System Call version number of a process descriptor.

• Get Process System Call Version (GETPVER): Get the version number that the

process will use on each System Call. The function do_getpver() of SYSTASK is

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 8

used by the BS to get the System Call version number of a process descriptor, and

then search the GEPT for that version.

4.2. System Calls Library Changes

To use Local Dynamic Binding, all programs must be linked with the modified

libc.a library. The modified source code of the getuid() function is presented as an

example:

1. The process checks that the BS is running. If it is not running, makes the System

Call to PM.

2. The process checks for the desired service endpoint number in the LEPT. If it is

not in the LEPT, makes a SVCBIND (Service Bind) request to the BS; then saves

the replied endpoint into the LEPT for future uses.

3. The process sends a request message to the resolved endpoint as a destination for

the GETPID service.
extern endpoint_t lept[LEPTSIZE];
extern int bind_ep;
PUBLIC pid_t getpid()
{
 message m;
#ifdef LCLBIND
 int server_ep, retcode;
 if (bind_ep == NONE) /* is BS running? */
 return((pid_t)_syscall(MM, GETPID, &m));
 if ((server_ep = lept[GETPID])== NONE){
 m.m3_i1 = GETPID;
 retcode = _syscall(bind_ep,SVCBIND,&m);
 server_ep = m.m3_i1;
 if (retcode !=0)
 return((pid_t)_syscall(MM, GETPID, &m));
 lept[GETPID] = server_ep;
 }
 return((pid_t)_syscall(server_ep,GETPID,&m));
#else
 return(_syscall(MM, GETPID, &m));
#endif

5. Bindery Server Services

The MINIX 3 DataStore (DS) server allows components to back up data and

retrieve it after a restart. One of the 5 types of data that are supported by the DS is

LABEL that it builds a one-to-one mapping between a name and a number. It could

be used as a Bindery Server that maps the service name to the service endpoint

number, but its functionality is very limited because it does not support multiple

versions and other required services.

The proposed BS offers four services.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 9

1. Service Set: It is used by GSs to register their services. They request BS to set

specific versions of System Calls that will be served by them.

2. Service Reset: It is used by GSs to deregister their services. They request BS to

reset specific versions of System Calls served by them.

3. Service Bind: It is used by programs linked with the modified libc.a library using

Dynamic Binding. The process requests the endpoint number of a service to the BS

that searches for the endpoint number and the version of the requester’s process

descriptor, returning the endpoint of the GS to the process.

4. Get Global Endpoint Table: It can be used by any process that needs a copy of the

BS’s GEPT. It is used by the modified Information Server (IS) to dump the GETP

on the console screen after pressing Shift-F9 key combination.

6. Conclusions

MINIX 3 modern architecture based on a microkernel and Device Drivers in User

mode make it a reliable Operating System. The message transfer is the paradigm used

by MINIX to implement System Calls, Task Calls and Kernel Calls, but a drawback

of MINIX implementation is the fact that System Calls are server by FS and PM. If

New System Calls need to be added, some kernel constants, and FS and PM System

Call tables need to be changed and those servers must be recompiled and the system

restarted.

The major advantage of Local Bindery Services is that new services can be

implemented without kernel/servers recompilation and system restarting, speeding up

the development process.

With the use of Local Bindery MINIX could have multiple memory management

processes (other than the PM) that could manage memory areas with different

policies, some of them using the Buddy algorithm, other using Best Fit, etc.

The Local Bindery Services are not limited to System Calls, they can be used for

Task Calls or Kernel Calls offering a wide range of possibilities to developers and

would be extended for networking and distributed services.

Similar approaches of the proposed Local Bindery Services can be included in

other microkernel or monolitic operating systems as LINUX offering flexibility,

reliability and performance enhancement.

References

1.Tanenbaum, Woodhull. Operating Systems Design and Implementation, Third Edition,

Prentice-Hall, 2006.

2.MINIX3 Home Page, http://www.minix3.org/

3.Herder. Towards A True Microkernel Operating System, master degree thesis, 2005.

4.Herder, bos, Gras, Omburg , Tanenbaum. Modular system programming in MINIX 3 ;Login:

April 2006.

5.RFC1833: Binding Protocols for ONC RPC Version 2. http://www.faqs.org/rfcs/rfc1833.html

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 10

