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Abstract. This work presents the application of parallel computing
techniques to solve two scientific computing applications over the
Latin America-Europe GISELA grid computing platform. The article
describes two scientific computing applications –the semi-automatic
processing of historical climate images and a software package for fluid
dynamics– which usually require large computing times when applied
to realistic scenarios. The proposal of applying parallel computing
techniques over the GISELA grid infrastructure is formulated, and
the implemented solutions are described. A preliminary experimental
analysis is reported, presenting the estimated efficiency gains when using
the grid infrastructure.

Keywords: grid computing, HPC, scientific computing

1 Introduction

Grid computing has become a new paradigm to deal with hard-to-solve problems,
by cooperatively using a large set of computational resources distributed around
the globe. Grid infrastructures provide great computing power, which is far larger
than the available in single research institutions and universities, making possible
to face more complex problems, increasing the accuracy of the solutions, and
solving them in reasonable times. In our research context, the regional grid
infrastructure has been developed by the Grid Initiative for e-Science virtual
communities in Europe and Latin America (GISELA) project [5], which groups
a large number of institutions from 19 countries on Latin America and Europe.

A specific area of application of the new grid computing infrastructures is
scientific computing, a field where compute-intensive problems are very common.
In this line of work, this article presents the application of parallel computing
techniques to solve two scientific computing applications over the GISELA
European-Latin American grid computing platform. Both scientific computing
applications described in this work –the semi-automatic processing of historical
climate images and a software package for fluid dynamics– have a great relevance
for meteorological forecast, disaster control, and natural resources management.
Both applications usually require large computing times when applied to model
realistic scenarios. Thus, parallel computing techniques are needed in order to
reduce the computing times, allowing to obtain accurate solution in reasonable
times.
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2 Scientific computing in the GISELA grid infrastructure

The main contribution of this article is to explain how this two scientific
computing applications have been adapted to execute in a grid computing envi-
ronment, and also to describe how to develop their distributed implementations
over the European-Latin American grid infrastructure built by the GISELA
project. A preliminary experimental analysis is also reported, and the estimated
efficiency gains when using the grid infrastructure are presented.

The rest of the article is organized as follows. Section 2 briefly introduces
the grid computing paradigm, and Section 3 describes the main components
of the European-Latin American grid infrastructure built by the GISELA
project. After that, Section 4 presents the two scientific computing applications
parallelized in this work: Digi-clima and caffa3d.MB. The main details about the
implementations of Digi-clima and caffa3d.MB over the grid infrastructure are
provided in Section 5. A preliminary experimental analysis and the projected
efficiency gains are reported in Section 6. Finally, Section 7 summarizes the
conclusions of the research and formulates the main lines for future work.

2 Grid computing

In the last twenty years, distributed computing environments have been
successfully employed to solve complex problems. The size and the computing
power of distributed computing environments have significantly improved,
mainly due to the fast increase of the processing power of low-cost computers
and the rapid development of high-speed networking technologies. Nowadays, a
common platform for distributed computing usually comprises a heterogeneous
collection of computers able to work cooperatively for solving complex problems.
At a higher level of abstraction, the expression grid computing has become
popular to denote the set of distributed computing techniques that work over
a large loosely-coupled virtual supercomputer, formed by combining together
many heterogeneous components of different characteristics and computing
power. This infrastructure has made it feasible to provide pervasive and cost-
effective access to a collection of distributed computing resources for solving
problems that demand large computing power [4].

Grid computing applies some key concepts from parallel computing: the
workload distribution and the mechanisms used for the synchronizations/com-
munications between distributed processes are crucial aspects to achieve high
performance when using a loosely-coupled computing infrastructure. As well as
the flow of data and instructions, which often define the type of parallelism
applied in the grid; and portability issues, specific hardware requirements,
and required run-time libraries and modules. These prerequisites have to
be checked before implementing and/or executing a parallel application in
a grid infrastructure. The large availability of computing resources in grid
infrastructures also provides support to implement fault-tolerance mechanisms,
such as checkpointing and restarting, multiple data repositories, etc. Due to all
these features, grid computing has emerged as a powerful paradigm for solving
complex problems in many application areas [1].
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Scientific computing in the GISELA grid infrastructure 3

3 The GISELA grid infrastructure
GISELA [5] is a consortium of 19 partners (5 from Europe and 14 from
Latin America), that aims at ensuring the long-term sustainability of the
Latin American Grid Initiative (LGI) and provides virtual research communities
(VRC) with e-Infrastructure and application-related services. The consortium
partners are organized in Virtual Organizations, which share information,
computing power, software, or other resources for collaborative problem-solving.

At May, 2011, GISELA has 1233 CPU and 63 TB of storage, in 21 centers.
The pledged computational power to be integrated is of 2660 CPU, 105 TB
of storage and 56 resource centers. GISELA is working the transition of the
LGI sustainability to the Latin American Cooperation of Advanced Networks
(CLARA).

GISELA uses the gLite middleware stack [8] as the default software platform.
gLite was produced by the EGEE [2] project and it is used by a large number
of scientific groups in the world. The services on gLite are organized in five
groups: security, information and monitoring, job management, data storage,
and helper. The main components are: User Interface (UI), which provides users
with tools for job management; Computing Element (CE), which provides the
computing power; Storage Element (SE), which provides data storage services;
and the Workload Management System (WMS), for job scheduling.

Fig. 1 shows the main components of gLite. A CE is a set of computing
resources (Worker Nodes - WNs), the computers where the jobs are run. The SE
provides uniform access to data storage resources. All data in a SE is considered
read-only and must be replaced on change. A file catalog service (LFC) is used to
locate files or replicas in every SE in the grid. LFC maintains a mapping between
the logical file name (LFN) and the physical storage URL of all of its replicas [7].
The WMS assigns the jobs to execute in the appropriate CE. Submitted jobs
are described using the Job Description Language (JDL), which specifies which
executable to run and its parameters, hardware and software requirements, etc.

The ARDA Metadata Grid Application (AMGA) is a metadata service on the
grid that allows users to efficiently maintain large results and application data.
A metadata catalog can be viewed as a simplified database of non-file related
data, too small or too volatile to be stored in data files [6].

Fig. 1. Main components of gLite.
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4 Scientific computing in the GISELA grid infrastructure

4 Two scientific computing applications

This section describes the scientific applications to parallelize in GISELA.

4.1 Digi-Clima
Digi-Clima is an Octave/Matlab application for the semi-automatic processing
of historical graphical rain records. In our country, historical rain records are
kept from the early 1900’s, most of them in paper. All this data is of great value,
but its use is limited due to its paper-format storage, and its preservation is in
danger. Digi-clima aims at digitalizing the pluviographic records to preserve the
data and to allow an easier access to it; these records are stored in graph paper
bands containing the pluviometer output for a certain time period, which can be
divided into intervals with each one looking like a continuous growing monotone
function, Fig. 2 shows three scanned pluviometer output bands. More than 20000
data bands are available from the last 30 years of the national flooding and the
stormwater management systems. Digitalizing one band takes about ten minutes,
thus, parallel computing is critical to reduce the total processing time.

Fig. 2. Three scanned pluviometer output bands.

General program description. Digi-clima performs the following tasks: (1) color
separation: separates the rain traces from the background and other information
by color tagging, getting a black and white image which only contains active
pixels corresponding to rain record traces; (2) individual band identification:
the frame information layer is analyzed to separate and scale the individual
bands; (3) trace identification: for each band, identifies traces of rain records
as continuous lines; (4) trace analysis: analyzes each trace to obtain its x(t)
footprint in pixel scaling, by using a simple median estimator in Octave, or by
using a spline fitting in Matlab; (5) trace grouping : orders the separate traces in
each band, since these records should be monotonic. (6) rain intensity computing :
obtains the rain intensity data from the discrete time derivative of the grouped
traces.
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Scientific computing in the GISELA grid infrastructure 5

Digi-Clima can be executed as: interpreted Octave, requires Octave 3.x and
ImageMagick (both open source); interpreted Matlab, requires Matlab 7.x or
higher with the curve fitting toolbox (licensed product); and compiled Matlab,
without extra library requirements, but the CE must match the compiled binary
architecture and the Matlab Compiler Runtime (MCR) must be available. The
MCR is provided with MATLAB Compiler and can be deployed royalty-free.

The disk space required is about 3 MB per image. The required RAM depends
on the records and the size of the image (usually, less than 1GB).

Parallel model. The gridification of Digi-Clima is based on data parallelism,
which splits the whole data domain into smaller subdomains, and executes a
single algorithm in parallel in each of them, as it is presented in Fig. 3.

Fig. 3. Data parallelism model.

Applying data parallelism to Digi-clima is straightforward, because process-
ing each image is independent from others. Also, as the final job output consists
only of the union of each parallel process output, no post-processing is needed.

A master/slave parallel model was applied to Digi-clima (see Fig. 4). The
master process launches and assigns the work to several slave processes that
executes Digi-clima on a set of images. Once a slave finishes its work, the master
process collects the output data to include it in the final job output.

Fig. 4. Master/slave parallel model in Digi-clima.
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6 Scientific computing in the GISELA grid infrastructure

4.2 caffa3d: 3D Navier-Stokes solver

caffa3d.MB implements a fully implicit finite volume method to solve the
3D Navier-Stokes equations in complex geometry, extending the 2D caffa.f by
Ferziger and Peric [3]. The next subsections introduces the mathematical model
and the solver in caffa3d.MB, and the proposal of applying parallel computing
techniques in the exploration of the parameters space of the model.

General program description. The mathematical model in caffa3d.MB considers
the mass balance equations and mass momentum equations for a Newtonian
incompressible flow in a gravitational field, using the Boussinesq approximation
to model the floating effects induced by small density variations due to tempera-
ture. The solver in caffa3d.MB includes block-structured, non-orthogonal, body
fitted, collocated meshes for the spatial discretization and several other features
to deal with complex geometries. For the time discretization, fully implicit two-
level first order (implicit backward Euler) and three-level second order schemes
are available. caffa3d.MB is mainly implemented in FORTRAN 77, including
some FORTRAN 95/90 extensions.

Performance analysis. caffa3d.MB usually involves intense computing, due to
three main groups of compute-intensive tasks: i) routines for updating the
coefficient matrix for each equation (momentum, mass balance, etc); ii) routines
for computing the gradients of each field through Gauss theorem; and iii) solving
the heptadiagonal systems of equations using the ILU SIP solver [9]. Routines
in i) and ii) imply visiting each cell interface in an ordered fashion (East faces
Loop, North faces Loop, Top faces Loop) and computing the flux contributions
to either the coefficient matrices or the gradients. Routines in iii) mainly involve
backward and forward substitutions to solve tridiagonal systems of equations.
In fact, the ILU SIP solver is the most time consuming routine in the code,
requiring up to 30% of the total computing time.

Software and hardware requirements. caffa3d.MB can be compiled with GNU
gFORTRAN, Intel ifort, and Portland Group gf90. Only standard libraries
are required for the compilation and the execution. RAM requirements vary
according to the mesh size, usually in the range of 0.5 to 6 GB.

Exploration of the caffa3d.MB parameter space. In engineering practice is often
not enough to run a single simulation with a specific set of parameters values. The
user usually needs to scan a large phase space -defined by a range of values- for
a given number of parameters. For example, a given flow problem might exhibit
critical behaviors at different values of the Reynolds number (RN), and the user
might be interested in simulations with a given range, incrementing its value
in steps. To perform this experimental analysis, a large number of independent
executions are needed. Afterward, the user might want to refine some interesting
region of the parameter space at smaller intervals of RN values. Thus, an efficient
way of organizing and distributing the parameters exploration is a useful tool
in practice. This is the basis of the specific proposal to implement using parallel
computing techniques in a grid environment.
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Scientific computing in the GISELA grid infrastructure 7

5 Implementation

This section presents the details of the distributed implementations of the Digi-
clima image processing and the caffa3d.MB parameter exploration proposed to
execute in the grid infrastructure.

5.1 Digi-Clima

The main issues to solve when executing Digi-Clima over a grid infrastructure
are: i) to distribute the images; ii) to avoid processing a single image at the same
time by two Digi-Clima instances; and iii) to retrieve the results and know to
which image they belong.

The time to set up the CE workspace to run Digi-clima (i.e. at least download
Matlab Compiler Runtime, which size is about 200MB.) is not negligible, and a
large number of images are to be processed, the proposed implementation uses
pilot jobs. Once submitted and assigned to a CE, the pilot job runs a loop,
executing Digi-clima on each iteration to process multiple images without the
delay due to job submission and CE setup. Grid file services are used to distribute
the images and to get the results. A metadata managing service named AMGA
is used for accounting on the images metadata as processing status and the
mapping between the original image file names and their corresponding results.

The image uploading script. The image uploading script runs on the image
directory. It creates the Digi-clima directory on AMGA and adds the attributes
for image accounting information: the image id on the SE, the image status,
the original name of the image file, the timestamp of the last update, and the
job identifier of the job which last updated the entry. After that, the lcg-cr

command is used to upload the images. A sketch of the script is presented in
Fig. 5 to show how the mentioned interaction with AMGA and storage services
works.

1 mdcli createdir / schooldir / valparaiso /Digi−clima / images
2 mdcli ” addattr $wPath/ images i d i n s e varchar (200) ”
3 mdcli ” addattr $wPath/ images s t a tu s varchar (1 ) ”
4 mdcli ” addattr $wPath/ images o r i g ina l name varchar (200) ”
5 mdcli ” addattr $wPath/ images l a s t upda t e i n t ”
6 mdcli ” addattr $wPath/ images j o b i d e n t i f i e r varchar (200) ”
7 image_count=$1
8 for image_name in `ls * . JPG ` ; do
9 image_count=$ (expr $image_count + 1)

10 lcg−cr −−verbose −−vo prod . vo . eu−eela . eu \
11 −l / grid / prod . vo . eu−eela . eu/Digi−clima / images /” $ image count ” \
12 −d se01−tic . ciemat . es $image_name

Fig. 5. Shell script to upload images and initialize AMGA.
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8 Scientific computing in the GISELA grid infrastructure

Pilot job. The pilot job has two components: the JDL file to submit the job to
the WMS, and the loop script that runs on a CE, launching on each step the
script to set up and run Digi-clima for each image. Fig. 6 presents the execution
sequence of the pilot job.

WN

AMGA

SE

1. Query next unprocessed image.
2. Assign next unprocessed image to WN.

3. Get assigned binary image.

4. Process assigned image.

5. Put processed image data.

6. Mark assigned image as 'processed'.

SE
SE

Fig. 6. Pilot job sequence diagram.

Pilot job descriptor . Fig. 7 presents the JDL file used for the submission of the
pilot job. The shell script is run with the pilot job script as parameter using the
given names for standard error and output files. Then, using the InputSandbox

rule the pilot job descriptor specifies the WMS to send the scripts needed within
the pilot job to the CE. After that, it is indicated to retry three times if the
execution fails and at last, through the Requirements, the pilot job descriptor
indicates that the job demands x86 64 architecture to run.

1 [ Executable = ”/bin /sh” ;
2 Arguments = ”Digi−c l ima . p i l o t . sh” ;
3 StdError = ” s td e r r . e r r ” ;
4 StdOutput = ” stdout . out” ;
5 InputSandbox={”Digi−c l ima . sh” , ” p i l o t . sh” , ”mdcl ient . c on f i g ” } ;
6 OutputSandbox = {” s t d e r r . e r r ” , ” stdout . out” } ;
7 RetryCount = 3 ;
8 Requirements = ( other . GlueHostArchitecturePlatformType == ”x86 64 ” ) ; ]

Fig. 7. Pilot job descriptor.
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Scientific computing in the GISELA grid infrastructure 9

Pilot job shell script. First, the pilot job shell script sets up the environment
to run LCG commands. After that, it locates the best replicas to download the
files needed to run Digi-clima, specially the Matlab Compiler Runtime which is
about 200 MB, and thus the main reason for using pilot jobs due to the download
time. This is done by using the lcg-lr command to list the replicas for a given
logical name, and then looking for a match with the default SE for the CE
within its output. If a match is found, then the download is done from that SE,
otherwise it tries from a known SE and if this operation fails too, it tries using
the logical file name. When the runtime, the code, and the libraries are already
downloaded, the pilot job shell script executes a loop running Digi-clima.sh for
each image, uploading the result to the SE, until there are no images left (see a
sketch of the pilot job shell script in Fig. 8).

1 export vo=prod . vo . eu−eela . eu # Set enviroment f o r LFC and LCG commands
2 export LCG_LOCATION=/opt / grid /ui/ lcg
3 export LCG_GFAL_INFOSYS=bdii−eela . ceta−ciemat . es : 2170
4 for each file do # Download needed f i l e s from best r e p l i c a
5 SEL_REPL= file_uri
6 # Try to get best r e p l i c a
7 REPL=$ ( lcg−l r file_uri | grep ”${$VO PROD VO EU EELA EU DEFAULT SE}” )
8 i f [ ”$REPL” != ”” ] ; then # found r e p l i c a at DEFAULT SE −> use i t .
9 SEL_REPL=$REPL

10 else # Try to use ” se01−t i c . c iemat . es ” .
11 REPL=$ ( lcg−l r file_uri | grep ” se01−t i c . c iemat . es ” )
12 i f [ ”$REPL” != ”” ] ; then # se01−t i c . c iemat . es f a i l s too , t ry LFN.
13 SEL_REPL=$REPL
14 lcg−cp −−checksum −−checksum−type md5 −−verbose $SEL_REPL file_name
15 END_EXECUTION=0 # Run Digi−c l ima
16 while [ $END_EXECUTION −eq 0 ] ; do
17 / bin /sh ${ JOB_DIRECTORY }/ Digi−clima . sh ${ JOB_DIRECTORY }
18 i f [ $? == $ERROR_ON_ASSIGN −o $EXIT_STATUS == $OK ] ; then
19 END_EXECUTION= 0 # Image proces sed by other , cont inue with next .
20 else
21 END_EXECUTION= 1 # Error in execut ion , end p i l o t job .

Fig. 8. Pilot job shell script.

Digi-clima.sh. The Digi-clima.sh shell script starts by checking AMGA for an
unprocessed image, and selecting one of them. After that, it tries to update the
status of the selected image to “being processed”, by asserting the image status
to be unprocessed. This way using the AMGA service to prevent concurrent
instances from selecting the same image to process. If this update fails, it means
that another job did the update in the time between the select and the update,
so the job fails returning the corresponding non fatal error, so the pilot job
can continue launching Digi-clima instances. If the update succeeds, the Digi-
clima.sh shell script retrieves the image from the nearest SE as explained in
5.1, and launches the Matlab script for that image. After the image processing
is done, the Digi-clima.sh shell script uploads the results to a SE and sets the
image as processed. A sketch of the Digi-clima.sh shell script is presented in
Fig. 9.
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10 Scientific computing in the GISELA grid infrastructure

1 query_result=$ (mdcli −c mdclient . config ”SELECT FILE FROM $path/ images
WHERE sta tu s = '$AVAILABLE' LIMIT 1” ) # Get an unprocessed image .

2 i f [ ” $que ry r e su l t ” != ”” ] ; then
3 mdcli −c mdclient . config ” updateattr ${path}/ images /${ qu e r y r e s u l t }

s t a tu s $ASSIGNED la s t upda t e $ ( date +%s ) l a s t upda t e j ob \” $JOB_ID
\” ' s t a tu s=$AVAILABLE' ” # Set image s t a tu s as a s s i gned

4 i f [ $? != 0 ] ; then # Rare case , other job got the image f i r s t .
5 exit $ERROR_ON_ASSIGN
6 # Find best r e p l i c a and download image ( as in p i l o t job s h e l l s c r i p t )
7 lcg−cp −−verbose −−checksum −−checksum−type md5 $BEST_REPLICA ${

image_local_path }
8 . / digi−clima $image_local_path # Process image and upload r e s u l t s
9 lcg−cr −−verbose −−checksum −−checksum−type md5 −−vo prod . vo . eu−eela .

eu −l ${ path_LFN }/ results / $query_result −d $DEFAULT_SE $RESULT
10 mdcli −c mdclient . config ” updateattr ${path}/ images /${ qu e r y r e s u l t }

s t a tu s $PROCESSED la s t upda t e $ ( date +%s ) l a s t upda t e j ob \”
$JOB_ID \” ' s t a tu s=$ASSIGNED ' ” # Set image s t a tu s as proces sed

11 else # No more images to process , end .
12 exit $END

Fig. 9. Digi clima launcher shell script (Digi-clima.sh).

5.2 caffa3d.MB: exploration of parameters space

The parameter exploration of caffa3d.MB in a grid infrastructure is conceived
as a master/slave parallel program. The master process controls the search
by performing the domain decomposition, assigning each slave the parameters
values to execute caffa3d.MB. The master also decides when to refine a promising
region of the parameter space, depending on the results obtained for any single
execution of caffa3d.MB performed by the slaves.

The parametric exploration could be implemented by using parametric jobs.
However, that is not the best choice to assure a correct load balancing when
executing on heterogeneous environments, because the output of the whole
parameter exploration can only be retreived after all jobs finish its execution.
In order to improve the load balancing by allowing a simultaneous exploration
of different regions of the parameter space using different parameter ranges,
a dynamic model is proposed for the distributed application. In the dynamic
model, the slave processes execute caffa3d.MB on demand, with the parameter
values sent by the master. Load balancing strategies (e.g. by adjusting the
parameter ranges to explore by each slave) are applied by the master to deal
with different simulation times for each of the parameter values explored. The
proposed model is well suited for a grid system, since the slave processes run
independent (i.e non-communicating) tasks.

In the first implementation of proposed application reported in this work, the
parameter to study is the Reynolds number. The master-slave grid application
for the parameter exploration of caffa3d.MB is presented in Fig. 10.
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Scientific computing in the GISELA grid infrastructure 11

Fig. 10. Master-slave grid application for caffa3d.MB parametrization.

The master process is implemented as the shell script presented in Fig. 11.

1 INI=$1 , STEP=$2 , END=$3
2 par = $INI ; apps = ( )
3 whi le par <= END # Submit the jobs ( par in INI :STEP:END)
4 apps = add ( ${apps [ @ ]} $par ) # Add app l i c a t i on to array
5 sed ” s /PAR/$par/g” caffa . jdl . TEMPLATE > caffa . jdl . $par # Create j d l
6 mkdir output_d . $par # Create output d i r
7 echo ”” > status . $par # Create l o c a l f i l e ( s t a tu s )
8 l cg−cr −v −−vo prod . vo . eu−eela . eu file : status . $par −l lfn : / grid/prod . vo .

eu−eela . eu/caffa/status . $par −d se01−tic . ciemat . es # Reg i s t e r s t a tu s
LFC

9 l f c −setcomment /grid/prod . vo . eu−eela . eu/caffa/status . $par 0 # Set
s t a tu s

10 glite−wms−job−submit −o id_caffa . $par −a caffa . jdl . $par # Submit the job
11 i f [ $? == 0 ]
12 echo ” e r r o r $? in submit job $par” ; e x i t 2
13 par=`expr ”$par” + ”$STEP” `

14 whi le [ length ( apps [ @ ] ) −gt 0 ] ; do
15 f o r i in $ { ! apps [ * ] } ; do # Check the job s ta tu s and proce s s r e s u l t s
16 i f [ ` l f c −ls −−comment /grid/prod . vo . eu−eela . eu/caffa/status . $apps [ $i ]

| awk '{ print $2 } ' ` −eq 1 ] ; then
17 unset apps [ $i ] # Appl i cat ion f i n i s h ed , d e l e t e from the array
18 # Process r e s u l t s
19 glite−wms−job−output −−dir . / output_d . $apps [ $i ] −i id_caffa . $apps [ $i ]
20 # Check i f a re f inement i s r equ i r ed ( i . e . i f max w>0.01)
21 process_output . / output_d .\ $apps [ $i ] /*/ caffa*out
22 i f [ result −eq 1 ] ; then # Execute the re f inements
23 NEW_STEP=`expr ”$STEP” / 10 `

24 INI=`expr ”$apps [ $ i ] ” + ”$NEW STEP” `

25 END=`expr $apps [ $i ] + 10 \* $NEW_STEP − 10`
26 . / master . sh ${INI} ${NEW_STEP} ${END} &
27 i f [ length ( apps [ @ ] ) −gt 0 ] ; then
28 wait 100 # Wait 100 seconds

Fig. 11. Master for caffa3D.MB parametrization.
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12 Scientific computing in the GISELA grid infrastructure

The master spawns a given number of slave processes (which explores
the parameters values from INI to END, with step STEP), and keeps an
identification for each slave process created in the application array. After that,
a JDL file with the specification of the job is created, using the template in
Fig. 12. Then, the output directory and the status file are created. The status
is registered in LFC, the ’unfinished’ value is set to it, and the job is submitted.
After spawning all the slave processes, the master iteratively checks for the status
of each process. When a slave finishes the assigned task, the master gets the
results of the execution (using glite-wms-job-output), and then it determines is
a refinement is required. In this case, a recursive invocation is performed, after
computing the new values for the arguments INI, FIN, and STEP.

1 Type = ”Job” ;
2 JobType = ”Normal” ;
3 Executable = ” s c r i p t c a f f a . sh” ;
4 StdOutput = ” ca f f a . out” ;
5 StdError = ” ca f f a . e r r ” ;
6 InputSandbox = {” s c r i p t c a f f a . sh” , ” t a r d e l c a f f a . ta r ” } ;
7 OutputSandbox = {” c a f f a . e r r ” , ” c a f f a . out” } ;
8 Arguments = ”cavc41 PAR” ;
9 Requirements = ( other . GlueHostArchitecturePlatformType == ”x86 64 ” )

Fig. 12. Template for caffa3D.MB JDL file.

The script that executes the caffa3D.MB in each slave is shown in Fig. 13.

1 export vo=prod . vo . eu−eela . eu
2 export LFC_HOST= l f c . eela . ufrj . br
3 export LCG_GFAL_INFOSYS=bdii . eela . ufrj . br : 2170 , bdii−eela . ceta−ciemat . es

: 2170
4 export LCG_LOCATION=/opt/grid/ui/ l c g
5 tar −xvf tar_caffa . tar > /dev/null # Extract f i l e s
6 f o r i in `ls cav*gin ` ; do # Generate meshes
7 echo $i | cut −d ” . ” −f 1 > . / temp_grid
8 . / grid3d . MB . 9 . 0 0 2 1 . lnx < . / temp_grid > /dev/null
9 echo $1 > . / problem_name # Generate b locks

10 . / block3d . MB . 8 . 4 0 0 5 . lnx < . / problem_name > /dev/null
11 . / caffa3d . MB . 8 . 5 0 0 2 . lnx $2 # Execute ca f f a3d .MB
12 tar −cvf output$2 . tar $1 . out > /dev/null # Pack output
13 l f c −setcomment /grid/prod . vo . eu−eela . eu/caffa/status . $2 1 # Set s t a tu s
14 l cg−cr −d $VO_PROD_VO_EU_EELA_EU_DEFAULT_SE −l lfn : / grid/prod . vo . eu−eela . eu

/caffa/output$2 . tar −−vo prod . vo . eu−eela . eu file : $PWD/output$2 . tar

Fig. 13. Script for executing caffa3d.MB.

6 Experimental analysis

Digi-Clima and caffa3d.MB were gridified during the CHAIN/GISELA/EPIKH
School for Application Porting held in Valparaiso, Chile, 2010. The development
and grid execution environments were provided as part of the school.
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6.1 Digi-clima

A lightweight version of Digi-clima (using a simplified image processing algo-
rithm) was used in the experimental analysis to process a test bank including
150 images (nearly 500 MB). The experimental analysis was performed on the
resources provided by CIEMAT-TIC (90 CPUs and 35 TB of storage). Digi-
Clima is a data intensive application, so it requires a fast access to the data
to be processed. The application was stored and executed in the CIEMAT-
TIC resource centre, thus locally accessing the data. This is not a limitation
for executing in a distributed environment: gLite supports replicating data in
multiple storage elements, guaranteeing an efficient access regardless of the
resource centre used as long as adequate replicas are created.

Two test cases using 4 and 20 pilot jobs were used for the gridified lightweight
Digi-clima. In the experimental evaluation, the pilot jobs waited 9 minutes
(average) on the job queue before beginning execution. Furthermore, although
the images are stored locally in the computing resource centre, the data download
and result upload of each image takes 11 seconds on average. Table 1 summarizes
the efficiency analysis of the lightweight Digi-clima. An estimation of the required
execution time for the full Digi-Clima application (using the complete version of
the image processing algorithm) is also included: the execution time should be
reduced from about 20 hs. to 1.3 hs. using only 20 pilot jobs.

Scenario #images pilot jobs time est. time est. speedup

Sequential 150 1 73.0 m. 20.0 hs. 1.00

Gridified4 150 4 32.0 m. 5.3 hs. 3.77

Gridified20 150 20 12.0 m. 1.3 hs. 15.05

Table 1. Digi-Clima application performance analysis.

The estimations show a promising nearly linear speedup. With this perfor-
mance gain, the gridified Digi-clima should be able to process 20000 images in
135 hs. using 20 pilot jobs, compared to the 2665 hs. for the sequential time.

6.2 caffa3d.MB parameter exploration

The experimental evaluation used two test cases, considering the RN parameter
in the intervals [50,1000] and [50,5000]. In both cases the flow behavior is initially
studied for RN varying in steps of 50 units. Those regions identified as promising
are explored considering smaller intervals for RN (varying in steps of 10 units)-
The meshes and blocks requires below 1 GB RAM, and the sequential execution
of caffa3d.MB for a given RN value takes about 20-30 minutes. The experiments
were performed using the CIEMAT-TIC resource center (90 CPUs).

Case 1: RN in [50,1000]. This test performed 20 caffa3d.MB executions in
the initial exploration, and 15 refinements in the 3 promising regions detected.
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Thus, a sequential search take about 400 m. = 6.66 hs. (20 exec.×20 m.) for the
initial exploration, and 300 m. = 5 hs. (15 exec.×20 m.) to perform the refined
search, with a total execution time of about 700 m. = 11.66 hs.

The parallel execution in grid took a total time of 45 m. to perform the
initial exploration, and 35 m. to perform the refinement, using 20 computing
resources. The scheduling in the WMS/CE took in average about 10 m., and
about 25-30 m. were spent in each execution of caffa3d.MB on the distributed
WNs. The average overhead due to the asynchronous implementation, the time
needed to download the program, and the access to LFC was about 3 m. The
total execution time for the parallel search was 80 m. = 1.33 hs.

Case 2: RN in [50,5000]. This is a larger scenario that performed 100
executions in the initial exploration and 12 refinements. The estimated time
for a sequential execution is 3200 m. = 53.33 hs. (160 exec×20 m.). The parallel
execution took a total time of 210 m. = 3.5 hs. to perform using the 90 computer
resources in CIEMAT-TIC.

Table 2 summarizes the execution times for the parameter exploration
(sequential and parallel over the grid). Significantly high speedup values were
obtained for the parallel application, specially for the largest test case, and
the computational efficiency values were acceptable (the refinements must be
performed after the initial search, thus the ideal computational efficiency is 0.5).

Scenario #WN time (sequential) time (grid) speedup

RN ∈ [50,1000] 20 11.66 hs. 1.33 hs. 8.75

RN ∈ [50,5000] 90 (estimated) 53.33 hs. 3.50 hs. 15.22

Table 2. Efficiency analysis for the caffa3d.MB parameter exploration.

7 Conclusions and future work

This work presented the application of parallel computing techniques to solve
two scientific applications over the GISELA European-Latin American grid
computing platform. The article described the digitalization of historical rain
intensity data in the Digi-clima application and the numerical solver for
computational fluid dynamics in the caffa3d.MB application.

The implementation details for the parallel Digi-clima and caffa3d.MB over
the grid were presented, including a conceptual description of the parallel models
used and the tools to implement the solution and execution over the grid.

A preliminary efficiency analysis was presented, demonstrating how the use of
the grid infrastructure significantly help to reduce wall execution times required
to solve these two complex problems.

Two main lines are formulated for future work: i) to further improve the
efficiency analysis of the proposed parallel implementations of Digi-clima and
caffa3d.MB, by solving even more complex scenarios and ii) to extend the
proposed parallel grid techniques to other scientific computing applications. We
are currently working on these topics now.
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