
Cache Sharing Administration for Performance
Fairness using D3C Miss Classification in

Chip Multi-Processors

Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Fŕıas

Facultad de Ingenieŕıa, Universidad de Buenos Aires.
Av. Paseo Colón 850, PB, (C1063ACV), Buenos Aires. Argentina.

ccarballal@gmail.com.ar

{jhamkal,bcf}@fi.uba.ar

Abstract. This work presents a study of fairness in cache sharing be-
tween processes in a chip multiprocessor (CMP). We propose a new algo-
rithm that uses a metric based on the D3C miss classification and LRU
Stack Distance, to measure the fairness in the administration of the re-
sources to achieve an increase of the global IPC of all executed processes.
Shared cache miss rate, IPC and bandwidth metrics were considered to
analyze the simulation results obtained using three test sets. The ob-
tained results showed that the proposed dynamic management policy
compared to Capitalist management policy, has a lower global miss rate
in shared cache and lower bandwidth usage for each test set studied and
fulfills its objective of managing the shared cache space for every process
while improving the overall IPC.

Keywords: Shared Cache, Multi-Process, CMP, Dynamic Cache
Administration, Instrumentation, PIN.

1 Introduction

Multi-Core architectures or Chip Multi-Processors (CMP) developments proved
to be a remarkable improvement in applications performance, as they provide an
efficient way to run multiple applications, or just one (through different subtasks)
simultaneously. This improvement in execution efficiency is achieved by multiple
individual processing units with private and shared memory resources available
[5].

At present, some processor architectures count on multiple cache memory
levels. For the sake of simplicity and performance, some levels are kept private
for each processor core, while other architectures explore sharing the last level of
cache among different cores of the processor [11, 7, 20, 18]. Shared caches memo-
ries are highly beneficial to performance, because in the extreme case of a single
core active while others inactive, the process being executed would count with all
shared cache memory, which is larger than all those used as private memories for

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 25

2 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Fŕıas

each core. Moreover, they provide high performance when cores share informa-
tion among themselves, reducing latency and coherence. However, they represent
a major challenge in terms of administration, since multiple processes access it
simultaneously giving place to situations that in private caches never occur, such
as over-writing information from another process (causing inter-process misses)
or anything that may affect performance even more, such as changes in the exe-
cution context of different programs when executed [9]. For this reason, it is de-
sirable to grant to each process in execution an amount of shared cache memo-
ry so as to achieve the best possible performance without causing an efficiency
decrease of other processes that are also in progress.

When searching to achieve this goal, in a previous study [6], a tool was in-
troduced to capture and process, on the fly, instructions from multiple processes
being executed simultaneously by using interchangeable modules. This tool uses
the PIN framework [1, 16] to dynamically instrument executed processes and a
process Controller to manage a step by step execution, and to send the collected
information to the processing modules. A processing module that simulates a
cache memory hierarchy of three levels was developed to obtain information
from different management policies for shared caches. For shared cache memo-
ry administration three high-level policies are defined [13]. A “Communist” ap-
proach seeks to maximize fairness, ensuring that each thread or process bears an
equal benefit from the presence of the cache. The goal for “Utilitarian” policy
is to maximize the total benefit for the aggregate group, by maximizing total
throughput and the “Capitalist” cache policy is an unregulated free-for-all (the
most common policy in use today).

The present work is organized as follows: in the next section the PIN frame-
work functioning and the tool to capture memory references of the processes in
execution are presented. Next, the new dynamic management policy developed
is introduced, which main objective is to improve the applications overall per-
formance by using a metric based on the D3C miss classification, so as to mea-
sure and manage the space needed for each process in shared cache memories.
Finally, it is presented the analysis of the results obtained from simulating a se-
lected group of benchmarks from the SPEC CPU 2006 [2] grouped as test sets.
This final analysis takes into account the shared cache miss rate, the IPC and
the bandwidth used by the new management policy presented here, in and it is
compared with Capitalist management policy, used as reference in other related
works.

2 Workflow Design

Instrumentation is a technique to insert extra code into an application in order
to observe its behavior. This can be done in several stages, such as: in the
source code, during compilation, at the post-link stage or during execution. PIN
provides a complete API (Application Programming Interface) that serves as an
interface abstraction layer to interact with the applications to be implemented,
making it possible to write different instrumentation tools called Pintools. A

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 26

Cache Sharing Administration using D3C Miss Classification in CMPs 3

JIT (just-in time) compiler is used to insert and optimize the instrumentation
code. PIN compiles the application directly in the same ISA (Instruction Set
Architecture) without passing through an intermediate code, storing the new
compiled code for execution in an internal cache. The architecture has a virtual
machine (Virtual Machine (VM)) which is the JIT compiler, an emulator that
interprets, and emulates certain instructions that cannot be executed directly
(usually system calls that require special treatment) and a dispatcher that is
responsible for “dispatching” the instructions from the application to the JIT
compiler.

2.1 Execution Behavior

PIN is able to implement an executable binary even if it creates new child pro-
cesses or new processing threads. A copy of the Pintool in the parent process
will control each new child process created, while new threads will be controlled
and synchronized using the API provided by the PIN inside the Pintool. Bear-
ing in mind the behavior of the applications to be implemented, we have chosen
the design presented below. It consists of a Pintool, a process Controller, two
message buffers through which the Pintool and the process Controller commu-
nicate. The controller is responsible for administering each process implemented
by the Pintool, during the execution process, indicating when the execution may
proceed, prior record of the process in the controller [6].

Fig. 1: Sequence diagram of the de-
velopment environment

1. The Pintool detects the beginning
of the process and enters in the
register buffer the PID (Process
Identifier) of the new process to
be implemented.

2. The Controller reads the PID of
the new process to control and
stores it in the iterative sequence
of execution of processes.

3. Each Pintool sends instrumenta-
tion information to its exclusive
communication buffer with the
Controller.

4. Iteratively the driver takes the in-
formation from the communica-
tion buffer for each registered pro-
cess and sends it to the processing
module.

5. After the information is sent to
the processing module, it is returned to the previous step.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 27

4 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Fŕıas

3 Algorithm for Dynamic Management

In multi-core architectures and CMPs, the last level of cache memory is typica-
lly shared by multiple cores to maximize the use of resources by avoiding low
latency information duplication and by reducing traffic information by lower-
ing coherence. Furthermore, shared cache memories allow dynamic allocation of
more flexible resources; in an extreme case, a core can use all the cache space
when all the other cores are in idle state (this technology is applied in Intel
SmartCache and similars [17]). Shared cache memory uses space in a more flexi-
bly way as it reduces the number of accesses to the main memory. However, it has
a higher latency that propagates to lower levels. On the contrary, private cache
memory has lower latency but it inefficiently uses space because the hierarchy
contains multiple copies of data shared among processes.

Finally, the absence of isolation and administration on the use of space in
cache memories results in performance degradation. The above described effects
are increased by the competition for resources in multi-process environments.
For these reasons, it is necessary to propose resources administration policies in
order to minimize the above mentioned effects [21].

3.1 D3C Miss Classification

Miss classification according to 3C model [12], is conceptually clear and intuiti-
ve, and widely used in the scientific community for performance assessment.
However, it presents anomalies in certain cases that result in negative conflict
miss rates difficult to interpret when evaluating caches. These cases occur when
associative caches in working sets have a lower miss rate than fully associative
ones. When calculating conflict miss rates in the 3C model, all failed references
in the fully associative cache are subtracted from the total number of failed refe-
rences in the cache being studied, regardless of whether some of these references
are correct in the cache memory being studied. Thus, the negative value in a
conflict miss rate implies that it is higher the number of failed references in a
fully associative cache than the correct references in the cache being studied. An
additional drawback is the impossibility of classifying a miss individually, since
it is a statistical model.

Therefore in [10], a Deterministic 3C Model (D3C) is defined which uses
the same miss classification in terms of Capacity, Conflict and Compulsory but
redefining each concept:

“A capacity miss in the D3C model is every reference to memory that pro-
duces a non-compulsory miss in the cache being studied which also fails in a
fully associative one with LRU replacement of the same size. All the other non-
compulsory misses are defined as conflict misses, i.e. references that fail in the
cache being studied and are correct in a fully associative cache of the same size.”

This new classification makes it possible to determine for each memory refe-
rence of a process the type of miss involved so as to modify the available resources

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 28

Cache Sharing Administration using D3C Miss Classification in CMPs 5

to improve its performance. If conflict misses were majority in a given number of
memory references C, it would be desirable to increase the cache associativity,
since the greater associativity the lesser conflict misses. If, instead, the majority
were capacity misses, it would be advisable to increase the number of blocks per
way. Compulsory misses should not be considered because compared to capacity
and conflict misses they are really very few, and if necessary, eventually reduced
or even eliminated, using the prefetching technique [11].

3.2 LRU Stack Distance

In 1970, Mattson et al. [8] published the first technique for evaluating various
virtual memory replacement strategies using stacks. His algorithm takes a trace
of memory references, cache line references or virtual page references in a pro-
gram, and builds a stack as follows: every memory location is pushed onto the
stack when it is referenced. Locations that have been referenced a long time ago
sink towards the bottom of the stack, but locations that are referenced again are
extracted from the stack and pushed back on top, being the LRU stack distance
for a given reference defined by its depth in the stack [4].

This technique was so successful, since it was easy to implement and to apply
in simulations, that it was quickly adopted and used by the scientific community.
With this algorithm, an operational definition of the D3C classification can be
defined:

Given a cache size equal to B blocks, and memory reference LRU distance D
causing a miss, then the miss is classified as follows:

– Compulsory: D not computable.

– Capacity: D > B.

– Conflict: D ≤ B.

Therefore, using the D3C classification together with the LRU distance it is
possible to classify a process memory reference miss.

3.3 Metrics to evaluate performance fairness

Since it is necessary to evaluate fairness of resources allocation for each process
during execution, it must be provided a definition of a metric to determine the
actual performance of each process according to their allocated memory resources
and the miss rate it produces in a time slice.

Metric for performance fairness in [14, 22] are expressed as follows:

TSha
i

TDed
i

=
TSha
j

TDed
j

(1)

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 29

6 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Fŕıas

This is the measure of fairness for two processes i, j. TSha
i time is the run time

for the process i in an environment where they share resources with the process j.
TDed
i is the execution time of process i with all resources for itself (dedicated).

Of the variables included in the calculation of runtime dynamic management
proposed in this paper is aimed at reducing the miss rate in the shared cache,
leaving invariant the other variables involved. Therefore, the equation (1) can be
expressed in terms of the miss rate in shared cache by applying the operational
definition of LRU Stack Distance and the D3C model.

MissesSha
capacity i

MissesDed
capacity i

=
MissesSha

capacity j

MissesDed
capacity j

(2)

In order to obtain the ideal performance, the fraction value for each process
is sought to be as close to unity as possible. As stated in [12], it is concluded
that increasing associativity instead of cache size, only reduces conflict misses,
while increasing size without increasing associativity can reduce conflict and
capacity misses. This is also indicated in [3] for SPEC CPU 2000 benchmarks.
With these concepts, the heuristic proposed provides total associativity to cache
memory, and to decrease it, it should be evaluated if all processes make use of
lower associativity than provided, or if external requirements such as an energy
consumption reduction make it necessary.

The equation for multiple processes in progress (2) is defined by the expres-
sion FMDCM: Fairness Metric for Deterministic Cache Misses:

FMDCM =
N∑
i

N∑
j

∣∣∣∣∣MissesSha
capacity i

MissesDed
capacity i

−
MissesSha

capacity j

MissesDed
capacity j

∣∣∣∣∣ ∀i 6= j (3)

The practical technique for implementing (3) is described in the following
sequence of steps:

1. Define LRU stack size equal to the number of blocks in the cache memory.
Define a mark with the number of cache blocks allocated to the process to
be analyzed.

2. If the memory reference miss is not found in the stack, a dedicated and
shared capacity miss will be indicated (or compulsory).

3. If the memory reference is in the stack, and its LRU distance value is higher
to the mark indicated (which is the amount of cache blocks allocated to the
process at that moment) it will be a shared capacity miss.

4. Finally, if the memory reference is in the stack and its LRU distance value
is lower than the mark indicated, it indicates a conflict miss.

To achieve the best performance of all processes being executed, the value of
equation (3) must be minimized each time the amount of cache sets allocated to
each process is administrated.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 30

Cache Sharing Administration using D3C Miss Classification in CMPs 7

|FMDCMadministration i| < |FMDCMadministration i−1| (4)

Metric variation (3) to remove or add a certain amount of cache sets as
necessary is still to be defined, in order to accomplish the objectives in (4). Each
constant time slices the equation (3) is applied for every executing process.

When using a technique similar to that proposed in [15] to manage the space
allocated to each process, tiles containing a fixed number of cache sets are crea-
ted, and also exchanged with other processes. Each tile contains information
about the number of hits and shared or dedicated capacity misses that occurred
in the execution period before the management heuristics was applied.

By removing a tile allocated to a process, an increase in the metric (2) for
that process must be obtained. This value is the result of the addition of the
deallocated tile shared misses (misses having a LRU distance greater than the
amount of cache blocks allocated and lower than the total number of shared
cache blocks) and the total number of shared misses, preserving the amount
of dedicated misses. Experimentally, it was found that this calculated value is a
good predictor of performance decline in the process whose cache available space
was reduced. The calculation of capacity misses reduction for the process which
was allocated a new tile (resulting in a performance increase) is less accurate
since this value cannot be determined in a simple way because it depends on the
use the process makes of it (in terms of number of hits). The value adopted was
the tile value with less shared misses. So, the final value calculated was obtained
by subtracting the shared misses from the available tiles and the shared misses
from the tiles with less shared misses, preserving the amount of dedicated misses.
Though this may be objected claiming that total average of capacity misses or
misses from tiles with the lowest and highest number of accesses could be more
accurate, the test results demonstrates that this metric is effective, practical and
easy to implement.

The last consideration to take into account is that, in certain iterations, the
value of dedicated misses is equal to 0. This can happen because the process had
mainly shared misses or only conflict misses, which would cause shared misses
being equal to 0. In the first case in which dedicated misses are equal to 0, a
metric was adopted to obtain the amount of shared misses. The reason for this
decision is that if a process only has this kind of misses, it will be benefited with
increased space, since data size is the same or lower than the shared cache. If
multiple processes are in this state, the metrics will give more space to the one
with the highest number of misses. In the second case, the metric obtains the
ideal value of 1, since having no shared dedicated misses indicates the ideal value
for (2).

Metrics applied for evaluating performance on simultaneous processes in
progress were presented as well as the shared cache dynamic management poli-
cies used.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 31

8 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Fŕıas

4 Experimental Methodologies

4.1 Simulated Architecture

Bearing in mind the memory hierarchies used in the most recents CMP’s models,
the architecture chosen for the simulation is the following:

• 2 cores.
• Private split L1. 32KB, 4 ways y 64B block size. 1 cycle for hits.
• Private and unified L2. 256KB, 8 ways y 64B block size. 7 cycles for hits.
• Shared and unified L3. 2MB, 16 ways y 64B block size. 20 cycles for hits.
• 380 cycles for main memory latency.
• 4 instructions in parallel execution per core.
• 50 cycles of time of time of administration (if applicable).
• 300000 cycles run between administrations (time slice).

Three test sets consisting of two benchmarks each were applied.

(A) H264 and Libquantum.
(B) Gcc and Libquantum.
(C) H264 and Gcc.

Every test set was executed for 1000 million instructions without being in-
strumented to eliminate the startup effects of every benchmark, and then instru-
mented for a total of 200 million instructions.

4.2 Simulation Results

In order to achieve the main objective of the proposed management policy, differ-
ent parameters for measuring performance of processes in progress are affected.
For this reason, several metrics were considered to analyze the simulation results
obtained. The metrics used were:

1. Shared cache miss rate
2. Instructions Per Cycles (IPC)
3. Bandwidth used

These three metrics proposed were compared with the capitalist management
policy which is used in related and reference works.

4.3 Shared Cache Miss Rate

The first results to be analyzed correspond to the shared cache miss rate obtained
using the dynamic management proposed and the capitalist management policy.
Minimizing the amount of misses is sought as these entail very high penalties
that produce the IPC decrease. For each test set assessed three figures are shown.
The first figure corresponds to the miss rate in shared cache for each individual
process, the following shows the distribution of tiles for each process performed

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 32

Cache Sharing Administration using D3C Miss Classification in CMPs 9

by the dynamic management proposed, while the last figure shows the miss rate
of the global test set analyzed.

In the test set A, it can be observed the miss rate continuous decline up
to the execution cycle 33M, from which it gets into a steady state. This is the
result of the number of hits needed to stabilize the shared cache memory. These
early misses can turn into compulsory misses, so it can be assumed that as from
execution cycle 37M shared cache memory gets into an execution “regime”.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

M
is

s
R

at
e

[%
]

Execution Cycle [M]

Miss Rate of H264 and Libquantum

H264 − Capitalist
Libquantum − Capitalist
H264 − Proposed Adm.

Libquantum − Proposed Adm.

(a) L3 Miss Rate

 495

 500

 505

 510

 515

 520

 525

 530

 80 85 90 95 100 105

N
u

m
b

er
 o

f
T

il
es

Execution Cycle [M]

Tile distribution of H264 and Libquantum

H264
Libquantum

(b) Tiles Distribution

Fig. 2: Test Set A.

After execution cycle 40M the heuristic developed here starts to differentiate
from the capitalist one, by eliminating inter-process misses and giving space to
each benchmark. When H264 benchmark reaches this point, it has the necessary
space for data, does not have interferences with Libquantum and the miss rate
decreases while in Libquantum space for data is diminished, available space is
restricted and the miss rate increases.

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

M
is

s
R

at
e

[%
]

Execution Cycle [M]

Total Miss Rate of H264 and Libquantum

Capitalist
Proposed Adm.

Fig. 3: Global miss rate of Test Set A.

Inter-process misses represent 34.4%
of the total misses produced in shared
cache under the Capitalist manage-
ment and 0% under the administra-
tion proposed. The maximum global
miss rate reduction achieved for this
test set under the administration pro-
posed is about 20%, and according
to the information obtained after the
simulation, Libquantum ended up oc-
cupying 51.6% of space and H264 the
remaining 48.4% of the shared cache.

Each tile includes two sets of sim-
ulated shared cache. This results in a
size of 2KB per tile. Thus, it is concluded that the heuristic provided more space

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 33

10 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Fŕıas

to Libquantum benchmark, which has lower data locality for data than H264,
but the latter was assigned the necessary space to achieve its optimal perfor-
mance according to the metrics applied. Regarding the global miss rate for this
test set, it can be observed that space restriction, when separated into disjoint
tiles, made no difference to the miss rate in the first execution cycle (the heuris-
tic did not perform reallocations), while when space managing process started,
it caused a decrease in the global miss rate. Although H264 miss rate decreases
and Libquantum increases, taken globally, the benefits of successfully applying
the dynamic management policy to the shared cache memory can be seen.

The test set B analysis shows that a number of execution cycles similar
to those of the test set A is required to get into a cache regime. For individual
miss rates in each benchmark, it can be observed the same effect as in the test
set A.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

M
is

s
R

at
e

[%
]

Execution Cycle [M]

Miss Rate of Gcc and Libquantum

Gcc − Capitalist
Libquantum − Capitalist

Gcc − Proposed Adm.
Libquantum − Proposed Adm.

(a) L3 Miss Rate

 470

 480

 490

 500

 510

 520

 530

 540

 550

 60 70 80 90 100 110 120

N
u

m
b

er
 o

f
T

il
es

Execution Cycle [M]

Tile Distribution of Gcc and Libquantum

Gcc
Libquantum

(b) Tiles Distribution

Fig. 4: Test Set B.

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 20 40 60 80 100 120

M
is

s
R

at
e

[%
]

Execution Cycle [M]

Total Miss Rate of Gcc and Libquantum

Capitalist
Proposed Adm.

Fig. 5: Global miss rate of Test Set B.

However, when compared to the
achievements of implementing test set
A, it is clear that a lower improve-
ment was achieved in Gcc miss rate,
and that the range of increase in the
Libquantum rate was preserved. This
is because Gcc has 67.2% more ac-
cesses to the shared cache than H264
does, resulting in inter-processes miss
rates for this test set of 35.5% imple-
mented under the capitalist manage-
ment policy and 0.2% under the ad-
ministration proposed.

The latter, ended providing less
space to Gcc than to H264, since the former has higher data locality up to

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 34

Cache Sharing Administration using D3C Miss Classification in CMPs 11

the execution cycle 85M, whereas Libquantum has much lower data locality
than the size of the shared cache studied, and all the same it fails to make a
considerable difference, because the space is higher than the one obtained in the
test set A. The maximum global miss rate reduction achieved for this test set
using the administration proposed is about 11%.

Tile allocation by dynamic management for this test set confirms what was
concluded when analyzing individually each benchmark miss rate. Apart from
efficiently allocating space in cache memories, space allocation rates managed
to adapt quickly enough to changes in access rates of the test set. This can be
observed when allotted space variation rate is higher than in test set A.

4.4 Instructions Per Cycles (IPC)

Comparing the IPC metric of an executed process under the management pol-
icy with the one under the Capitalist policy gives an idea of the increase in
performance improvement. This increase can be calculated using the following
expression:

PerformanceSpeedUp =
IPCDynAdm.

IPCCap.Adm.
(5)

The metric analysis for the test set A, indicates that the decrease in bench-
mark H264 miss rate is clearly reflected in its IPC increase, while for Libquan-
tum, having a lower rate of memory hits, the increase in the miss rate does
not affect its performance significantly. The maximum improvement achieved
for benchmark H264 was 10%, while the maximum performance decrease for
Libquantum was 3%.

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0 20 40 60 80 100 120

IP
C

Execution Cycle [M]

IPC of H264 and Libquantum

H264 − Capitalist
Libquantum − Capitalist
H264 − Proposed Adm.

Libquantum − Proposed Adm.

(a) IPC

 3.15

 3.2

 3.25

 3.3

 3.35

 3.4

 3.45

 3.5

 3.55

 3.6

 3.65

 0 20 40 60 80 100 120

IP
C

Execution Cycle [M]

TOTAL IPC of H264 and Libquantum

Capitalist
Proposed Adm.

(b) Total IPC

Fig. 6: IPC of Test Set A.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 35

12 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Fŕıas

The total performance for this test set shows that maximum improvement
was achieved at 2.35%. This indicates that improving or worsening individual
performance of a process in progress is not to the advantage of the overall perfor-
mance. Finally, it is observed that the results obtained comply with the corollary
stated in [19], which indicates that fairness improving in resource management,
results in an increase of global performance in multi-process environments.

In the test set B, the Gcc benchmark is benefited by the proposed dynamic
management since the rate of cache hits is higher than in H264. By efficiently
managing the space allotted by each benchmark, varying it at the necessary speed
to match the changes in the shared cache rate of hits, and also by eliminating
inter-process misses with space distribution in tiles, it is possible to achieve
the increase in the IPC metrics for Gcc. This is lower than that obtained by
H264, because Gcc has lower data locality, but it is benefited by the removal
of interferences produced by Libquantum. Regarding the latter, the decrease in
IPC is 2.6%, being similar to that in the execution of the test set A. The analysis
of the total IPC metric for this test set shows a considerable input when working
in a shared cache memory regime. The maximum improvement achieved when
implementing capitalist management policy was 1.80%.

 1.64

 1.66

 1.68

 1.7

 1.72

 1.74

 1.76

 1.78

 1.8

 1.82

 1.84

 0 20 40 60 80 100 120

IP
C

Execution Cycle [M]

IPC of Gcc and Libquantum

Gcc − Capitalist
Libquantum − Capitalist

Gcc − Proposed Adm.
Libquantum − Proposed Adm.

(a) IPC

 3.25

 3.3

 3.35

 3.4

 3.45

 3.5

 3.55

 3.6

 3.65

 0 20 40 60 80 100 120

IP
C

Execution Cycle [M]

TOTAL IPC of Gcc and Libquantum

Capitalist
Proposed Adm.

(b) Total IPC

Fig. 7: IPC of Test Set B.

4.5 Bandwidth Used

This metric provides a measure of usage of main memory by execution processes.
By reducing the bandwidth used by processing cores, other devices may have
access to it, thus, improving the general system performance. Decreasing miss
rates in shared cache levels, implies less hits to the main memory (by the simu-

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 36

Cache Sharing Administration using D3C Miss Classification in CMPs 13

lated memory hierarchy), which should decrease the bandwidth used by the test
sets, as the global miss rate of the shared cache is reduced significantly by the
proposed administration, so it is reduced the bandwidth used. This is clearly seen
in the following figures, showing the bandwidth of each test set when capitalist
management policies and the policy developed in this paper are implemented.
For test set A, the reduction of the bandwidth usage is about 20% and for the
test set B is about 12%.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 20 40 60 80 100 120

B
an

d
w

id
th

 [
%

]

Execution Cycle [M]

Bandwidth of H264 and Libquantum

Capitalist
Proposed Adm.

(a) BandWidth Usage of Test Set A

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0 20 40 60 80 100 120

B
an

d
w

id
th

 [
%

]

Execution Cycle [M]

Bandwidth of Gcc and Libquantum

Capitalist
Proposed Adm.

(b) BandWidth Usage of Test Set B

Fig. 8: BandWidth Used.

Test set C deserves being analyzed soon afterwards. Gcc and H264 bench-
marks showed no variation when applying the proposed dynamic management
policy as regards the capitalist one. This result is due to the fact that both bench-
marks did not present enough inter-process misses so as the proposed heuristics
could prove a performance improvement when varying the allocated space to each
process. When capitalist management policies were implemented, inter-process
misses represented only 2.4% of shared cache misses, so that when implementing
the policy developed, it assigned the same amount of tiles to each benchmark
and made no tiles exchanges, resulting in a negligible variation of the miss rate,
IPC and bandwidth metrics.

5 Conclusions

It was observed that the proposed policy has a lower miss rate in global shared
cache for each test set studied. Certain processes increased their miss rates by
space restrictions, so that other processes could make better use of that space,
thus increasing the global IPC. Also, it was proved that a more efficient use of
space in shared cache memory is achieved by eliminating inter-process misses

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 37

14 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Fŕıas

and adapting available space for each process in progress at a suitable speed
according to the hit rate to shared cache memory. The maximum global miss
rate reduction achieved for the test set A was 20% and for the test set B was
12%. The dynamic management heuristic implemented fulfills its objective of
managing the shared cache space for every process while improving the overall
IPC. The maximum global IPC achieved for the test set A was 2.35% and for
the test set B was 1.8%.

Using the capitalist management policy, the test sets had no inter-process
misses that would cause a high process overlap inside the shared cache, this was
due to the fact that the memory hierarchy used counted with a level of resources
higher than those normally used in related works, resulting in the decrease of
such misses. This highlights the benefits of the metrics chosen to evaluate the
space to be occupied by each process (the metrics provided by equations (3) and
(4)), applied in the heuristic for dynamic management policy proposed.

Finally, the bandwidth consumed for each policy was analyzed and it is con-
cluded that when making better management of space in shared cache memories,
misses are reduced, and therefore the accesses to the main memory, thus dimin-
ishing bandwidth use, according to the reduction in the global miss rate.

6 Future Work

Future works will concentrate on evaluating dynamic management policies in
working environments provided with more cores (more than 8), in order to ana-
lyze the behavior of the heuristic developed in over-exploited shared cache mem-
ories. Another aspect to be studied is the application of the heuristic to simulta-
neous multi-threading (SMT) environments and in multiple cores with multiple
processing threads. This new analysis will imply updating the Pintool developed
so as to detect different execution threads for each process. The process con-
troller will not be modified but some processing modules will be added to classi-
fy information according to the thread and the process it belongs to. Another
aspect to be explored is the Pseudo-LRU stack algorithm and its impact on the
implementation of the metrics proposed, since it diminishes precision for miss
classification.

7 Acknowledgments

This work was supported by the University of Buenos Aires and the National
Council of Scientific and Technical Research (CONICET).

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 38

Cache Sharing Administration using D3C Miss Classification in CMPs 15

References

1. Pin - a dynamic binary instrumentation tool. http://www.pintool.org.
2. Spec cpu2006. http://www.spec.org/cpu2006/.
3. Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena Milenkovic. Performance

evaluation of cache replacement policies for the SPEC CPU2000 benchmark suite.
Proceedings of the 42nd annual Southeast regional conference on - ACM-SE 42,
page 267, 2004.

4. George Alm. Calculating stack distances efficiently. ACM SIGPLAN Notices, 38(2
supplement):37–43, February 2003.

5. D. Burger and S.W. Keckler. Exploring the design space of future CMPs. Pro-
ceedings 2001 International Conference on Parallel Architectures and Compilation
Techniques, pages 199–210, 2001.

6. Claudio A Carballal, José Luis Hamkalo, and Bruno Cernuschi-Fŕıas. A Modu-
lar Workflow to Dynamically Instrument and Treat Information in Multi-Process
Environments. (ISSN 1850-2776):14, 2010.

7. Jonathan Chang, Ming Huang, Jonathan Shoemaker, John Benoit, Szu-liang Chen,
Wei Chen, Siufu Chiu, Raghuraman Ganesan, Gloria Leong, Venkata Lukka, Stefan
Rusu, and Durgesh Srivastava. The 65-nm 16-MB Shared On-Die L3 Cache for
the Dual-Core Intel Xeon Processor 7100 Series. 2007.

8. J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for storage hierar-
chies. IBM Systems Journal, 9(2):78–117, 1970.

9. Greg Hamerly and Brad Calder. Discovering And Exploiting Program Phases. Ieee
Micro, pages 84–93, 2003.

10. José Luis Hamkalo and Bruno Cernuschi-Fŕıas. A Taxonomy for Cache Memory
Misses. Proc. of the 11th Symposium on Computer Architecture and High Perfor-
mance Computing, pages 67–73, 1999.

11. J L Hennessy and D A Patterson. Computer Architecture: A Quantitative Ap-
proach, volume 3rd. Morgan Kaufmann, 2006.

12. Alan Jay Hill, Mark adn Smith. Evaluating Associativity in CPU Caches. IEEE,
(vol 38 No 12), 1989.

13. Lisa R Hsu, Ann Arbor, and Steven Reinhardt. Communist , Utilitarian , and
Capitalist Cache Policies on CMPs : Caches as a Shared Resource. 2006.

14. Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture. 2004.

15. Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and
P Sadayappan. Enabling Software Management for Multicore Caches with a
Lightweight Hardware Support. 2009.

16. Chi-keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Steven
Wallace, Vijay Janapa, and Geoff Lowney. Pin : Building Customized Program
Analysis Tools. 2005.

17. Ruud Van Der Pas and High Performance. Memory Hierarchy in Cache- Based
Systems. 2002.

18. L Peng, J Peir, T Prakash, C Staelin, Y Chen, and D Koppelman. Memory hierar-
chy performance measurement of commercial dual-core desktop processors. Journal
of Systems Architecture, 54(8):816–828, 2008.

19. G. Edward Suh, Srinivas Devadas, and Larry Rudolph. Analytical Cache Models
with Application to Cache Partitioning. 2001.

20. Simon Tam, Stefan Rusu, Jonathan Chang, Sujal Vora, Brian Cherkauer, and
David Ayers. A 65nm 95W Dual-Core Multi-Threaded Xeon Processor with L3
Cache. pages 15–18, 2006.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 39

16 Claudio A. Carballal, José Luis Hamkalo, Bruno Cernuschi-Fŕıas

21. Carole-jean Wu and Margaret Martonosi. A Comparison of Capacity Manage-
ment Schemes for Shared CMP Caches. 7th Annual Workshop on Duplicating,
Deconstructing, and Debunking (WDDD) in conjunction with ISCA-35, 2008.

22. Xing Zhou, Wenguang Chen, and Weimin Zheng. Cache Sharing Management for
Performance Fairness in Chip Multiprocessors. 2009 18th International Conference
on Parallel Architectures and Compilation Techniques, pages 384–393, September
2009.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 40

