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Abstract. In many scientific areas, the use of models to represent phys-
ical systems has become a common strategy. These models receive some
input parameters representing some particular conditions and they pro-
vide an output representing the evolution of the system. Usually, these
models are integrated into simulation tools that can be executed on a
computational system. A particular case where models are very useful is
the prediction of Forest Fire propagation. Therefore, the use of models is
very relevant to estimate fire risk and to predict fire behaviour. However,
in many cases the models present a series of limitations. Such restrictions
are due to the need for a large number of input parameters and, usu-
ally, such parameters present some uncertainty due to the impossibility
of measuring all of them in real time. In consequence, they have to be
estimated from indirect measurements. To overcome this drawback and
improve the quality of the prediction, in this work we propose a method
that combines Statistical Analysis and Parallel Evolutionary Algorithms.

1 Introduction

According to [5], the most important factors that affect the rate of spread and
shape of a forest fire front are the fuel type (type of vegetation), humidity,
wind speed and direction, forest topography (slope and natural barriers), and
fuel continuity. Therefore, models require a set of input parameters, including
vegetation type, moisture contents, wind conditions, and so on, and they provide
the evolution of the fire line in the successive simulation steps.

Our work is focused on the consideration that there is no exact set of input
parameters to be applied to the propagation model because it is not possible
to know the exact value of each parameter when a fire starts. Furthermore,
in most cases these models cannot be analytically solved and must be solved
by applying numerical methods that are only an approach to reality. These
numerical solutions can be implemented as code. Thus, the precision or accuracy
of the prediction is not only limited by the gap between the model and the
reality, but it is also limited by the underlying processors. Such processors have
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numerical accuracy limitations: the representation of real numbers in digital
machines and the ability of the processors to process these numbers [11].

Models require static parameters (topography of the land), parameters that
can change very slowly (type of vegetation, also called ‘fuel’), parameters that
can change frequently (moisture content), and parameters that are completely
dynamic (wind conditions). The precision of these parameters is the important
point in prediction of the behaviour, and in many cases it is impossible to carry
out some types of measurements, and still worse in some cases it is not possible
to consider the parameter in a real situation.

In this context, the simple prediction of the fire line behaviour cannot be
considered to be reliable for two reasons: on the one hand, the existing difficulties
in accurately estimating the parameters and, on the other hand, the resulting
prediction is based on a single simulation, which does not constitute a reasonable
basis for making a decision given the uncertainty of the parameters. This is that
we call the classical prediction. This classical approach is depicted in Fig. 1.
In this scheme, FS corresponds to the underlying fire simulator, which will be
seen as a black box. RFL0 is the real fire line at time t0 (initial fire front),
whereas RFL1 corresponds to the real fire line at t1. If the prediction process
works, after executing FS (which should be fed with the corresponding input
parameters and RFL0) the predicted fire line at time t1 (PFL) should coincide
with the real fire line (RFL1).
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Fig. 1. Diagram of classical prediction of wildland fire propagation (FS: Fire Simulator;
PFL: Predicted Fire Line; RFLX: Real Fire Line on time X)

Some examples of systems following a classical approach are [1] [2] [12] [4]
[8] etc. The prediction obtained using this approach is usually different from the
reality because of the difficulty of providing the model with accurate input values.
Given this uncertainty, our method tries to determine the possible fire behaviour
based on Statistical Analysis [10] and Parallel Evolutionary Algorithms (PEAs)
[9] as optimization method.

2 Evolutionary Statistical System

The Evolutionary Statistical System (ESS), classified as Data-Driven meth-
ods with Multiple Overlapping Solution, is an improvement of the S2F 2M
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method [3]. It combines the original uncertainty reduction method implemented
in S2F 2M with the advantages that offer the PEAs, dealing with a population
of scenarios relevant to the study. ESS, like its predecessor, is based on statis-
tics, mainly on the concept of factorial experiment [10], where the combination
of several factors (input parameters) defines a scenario. In this case, each sce-
nario is represented by an individual in a population of possible solutions. For a
detailed description of the method, we suggest the reader to consult [3].
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Fig. 2. Diagram of ESS (FS: Fire Simulator; PEA: Parallel Evolutionary Algorithm;
OS: Optimization stage; SS: Statistical System; SK: Search Kign; FF: Fitness Function;
CS: Calibration stage; FP: Fire Prediction; PFL: Predicted Fire Line, RFLX: Real Fire
Line on time X)

A scheme of ESS is presented in Fig. 2. As can be observed, the system is
divided in two general stages: an Optimization Stage (OS) that implements the
parallel evolutionary algorithm (PEA box), and the Calibration Stage (CS) that
is in charge of the statistical method. OS iterates until the population reaches a
certain level of quality. For each individual FS and the fitness are calculated in
parallel. Then, every individual will be included in the Statistical System (SS
box). The output of SS (a probability map) has a double purpose. On the one
hand, the probability maps are used as the input of the SK box (Search Kign)
to search for the current Kign (a key number used to make a prediction), which
will be used at the next prediction time (t3). In this stage, a Fitness Function
(FF) is used to evaluate the probability map. On the other hand, the SS output
enters a Fire Prediction box (FP), which will be in charge of generating the
prediction map for time t2 taking into account the Kign evaluated at t1. This
process will be repeated during the execution as the system is fed with new
information about the fire situation.

The architecture of the ESS is based on the Master/Worker model [6]: In each
iteration the Master distributes an individual per Worker; the simulation of the
model and the evaluation of fitness function are applied over each individual
(tasks carried out by the Workers), returning the results to the Master. This
process is repeated until every individual in the population is treated. Finally
the Master evolves the population, aggregates the partial results and makes the
prediction for each time step.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 3



This system has been developed on a PC LINUX cluster using language C
and MPI[7] as the message passing library.

3 Conclusions

In this work we have presented a new method to reduce the uncertainty in input
parameters, in this case, applied to Forest Fire Prediction. However, the method
is general enough to be used in different models (floods, avalanches, etc.). The
method corresponds to a prediction improvement of a previous methodology
that has been proved like a good option to solve this kind of problem. In this
opportunity, we have combined the power of statistics and parallel evolutionary
algorithms. As we can see in the bibliography, there are several possibilities to
work with parallel evolutionary algorithms. In this first approach, we decide
apply parallelism only in the evaluation of the individuals, with the goal of
gradually increase the degree of parallelism to compare the results offered by
each alternative. Further study should focus on the analysis and tuning of the
method to obtain the best possible results and compare it with other methods.
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