
A Performance Prediction Module for Work�ow

Scheduling

David Monge1,4, Ji�rí B�elohradský3, Carlos García Garino1,2 Filip �Zelezný3

1 ITIC, Universidad Nacional de Cuyo, Mendoza, Argentina
2 Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina

3 Czech Technical University, Prague, Czech Republic
4 PhD Fellowship CONICET

{dmonge, cgarcia}@itu.uncu.edu.ar {belohjil,zelezny}@fel.cvut.cz

Abstract. Through the years, scienti�c applications have demanded
more powerful and sophisticated computing environments and manage-
ment techniques. Work�ows facilitated the design and management of
scienti�c applications. The complexity of today's work�ows demand a
high amount of resources and mechanisms for provisioning them. The
execution of scienti�c work�ow applications is a complex task and de-
pends on how the resources are assigned. Scheduling is the name given
to the process that assigns computing resources to the tasks comprised
in a work�ow. This work presents a scheduling algorithm (PPSA) for
work�ows tightly coupled to a performance prediction module (PEM).
A set of experiments was developed for measuring the performance of
the algorithm using the information provided by the proposed perfor-
mance module. The proposed algorithm is compared with an algorithm
included in the well-known work�ow middlewares Condor DAGMan and
ASKALON.

Keywords: Work�ow, Scheduling, Performance Prediction, Nonpara-
metric Regression

1 Introduction

In the last 30 years approximately, engineering and scienti�c areas have been
using computation as a main component in their experimentation and simula-
tion processes. At the beginning, supercomputers were used to simulate large
complex systems composed by partial di�erential equations. These early devel-
opments brought with them the need of generating tools for visualization and
data analysis. The complexity of such applications grew and thus more sophisti-
cated methods for data movement and storage were required. Such tasks began
to be repeated often and then scripts for the automation of the job were written.
Such scripts started to be more complicated and the tasks to execute demanded
more resources. Soon, the distribution of the workload across interconnected
computers was needed. The development of distributed computing technologies

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 130

allowed to deal with the execution of remote jobs and data. Work�ow applica-
tions were introduced to scienti�c areas due to the �exibility they provide for
design and management of applications.

Today's applications require a large number of resources and management
software. The complexity of actual work�ow applications require a vast amount
of resources. Such requirements can be ful�lled by using computing infrastruc-
tures deployed across organizations or in larger scale platforms such as the Grid.
The high heterogeneity of such kind of infrastructures introduces challenges that
must be addressed for a proper work�ow applications management. The process
of resource assignment is central for the the e�cient execution of work�ow ap-
plications. Mentioned process is known in the literature as work�ow scheduling.
A big number of solutions to work�ow scheduling has been developed and there
are still some improvement possibilities to actual approaches.

This paper is structured as follows. The concepts related with work�ow
scheduling are introduced in next section. Section 3 describes scheduling scheme.
Section 1 describes the scheduling algorithm incorporated in the DAGMan and
ASKALON work�ow systems. Section 5 discusses the experiments designed and
the obtained results. Finally, section 6 presents conclusions and future work.

2 Background

A work�ow can be de�ned as a set of tasks that must be performed in certain
order for achieving a particular objective. Formally a work�ow can be de�ned
as Υ (Γ,∆), where Γ is the set of tasks comprised in the work�ow and ∆ the
set of dependencies between pairs of tasks. There is a typical classi�cation for
work�ows, according to their structure: Directed Acyclic Graph (DAG) and Non-
DAG work�ows [1].

DAG work�ows do not allow cycles in their structure. In opposition, Non-
DAG work�ows allow the repetition of tasks or sequences of them by including
cycles in their structure. However, DAG work�ows are suitable for representing
most of the required applications in science and engineering research areas. Thus,
the major part of the e�orts have been focused on DAG work�ows [2,3].

Work�ow Scheduling is the process in which the selection of resources for
the tasks is performed according to a speci�c scheduling objective to met [2,3].
Scheduling is a complex process that is tightly coupled with other tasks such as
resource discovery, matchmaking, fault tolerance, information retrieval and so
on. Information retrieval is probably one of the most important features required
for work�ow scheduling. The availability of accurate and updated information is
crucial for the proper performance of schedulers.

Schedulers focused on minimization of the execution time (makespan mini-
mization) require information about the performance of the work�ow tasks and
the transfer times between them. Then, it is crucial to know the execution time
and outputs size of the tasks for the selection of the proper resources.

Tasks execution time prediction In general, tasks execution prediction can
be solved by Code Analysis [4], Analytic Benchmarking/Code Pro�ling [5,6]

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 131

and Regression Techniques [7]. First two families of prediction methods re-
quire a deep knowledge of the tasks performance that is not always ful�lled
by disciplinary users. In opposition, regression methods do not require such
knowledge because they use previous execution data for the prediction of
execution times.
There are two types of regression methods: Parametric Regression and Non-
parametric Regression. Parametric regression techniques construct a predic-
tion model by learning parameters of a function that describes the data.
Main disadvantage of such kind of techniques is that in the presence of new
information, the prediction model needs to be reconstructed. On the other
side, nonparametric regression techniques do not require the construction of
a prediction model. Such techniques are also known as data-driven because
predictions are done based on the available data. When new performance
information is acquired it can be added to the performance database for
being used in future predictions. This feature allows the construction of an
adaptive prediction scheme.

Tasks output size prediction To the best knowledge of the authors, no work
in the prediction of tasks output size has been done. The availability of
such information is crucial for the estimation of the transfer times between
tasks. To address such issue, we consider that it is convenient the use of non
parametric regression techniques based on the arguments discussed in the
previous paragraphs.

There are a number of solutions for addressing performance prediction issues
related with scheduling. Some of them are: Network Weather System (NWS) [8],
Performance Analysis and Characterization Environment (PACE) [9], Grid Har-
vest Service (GHS) [10].

In a previous work [11], a work�ow scheduling algorithm was presented. The
performance information of such algorithm was provided by a simple perfor-
mance model based on Analytic Benchmarking and Code Pro�ling suitable for
a speci�c type of synthetical tasks. In this work, we propose a scheduling algo-
rithm with performance estimation module for tasks execution time and outputs
size prediction based on a nonparametric regression technique.

3 Work�ow Scheduling based on Performance Prediction

This section discusses a novel scheduling algorithm for work�ows in the context
of Grid. Such algorithm uses a prediction module for retrieving necessary per-
formance information. The scheduling algorithm is described in subsection 3.1.
Subsection 3.2 presents the mentioned performance estimation module.

3.1 Performance Prediction Scheduling Algorithm

The Performance Prediction Scheduling Algorithm (PPSA) focuses on the ob-
tainment of resource mappings that minimize the makespan of DAG-based work-

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 132

�ows. PPSA is a Branch and Bound (BB)-based algorithm which presents non-
polynomial complexity [12,13,11]. Although in general, algorithms with polyno-
mial complexity are preferred over non-polynomial ones, PPSA has proven to
be an adequate solution obtaining important work�ow execution improvements
with a minimal scheduling overhead [11]. Such algorithm is proper for medium
size work�ows with about 200 tasks.

For larger size work�ows a partitioning method can be applied for the obtain-
ment of manageable sub-work�ows. Then, such sub-work�ows can be scheduled
by PPSA. A similar approach called Work�ow Partitioning and Deferred Plan-
ning, is adopted by the Pegasus work�ow system [14]. However, this work does
not addresses the partitioning of work�ows.

PPSA aims to reduce the work�ows makespan based on performance estima-
tions. The scheduling process is carried out by �nding a solution to a Constraint
Satisfaction and Optimization Problem (CSOP). PPSA receives as input a prob-
lem de�nition determined by the tuple ⟨X,D⟩ where X is the set of work�ow
tasks (variables set) and D corresponds to the set of compatible machines for
each work�ow tasks (domains set).

For the reduction of the characteristic algorithm's complexity, the problem
de�nition is simpli�ed in a Pre-assignment stage [11]. Such pre-assignment stage
reduces the domains of the critical tasks in the work�ow to the most powerful
resources. If a task can not be delayed without an increase of the work�ow
makespan, then it is a critical task. The details of the scheduling algorithm can
be seen in our previous works [11,12,13]. A schema of PPSA architecture and its
interaction with the Prediction Module is presented on �gure 1.

PPSA PEM

Pre-assignment

generator

Workflow Definition

Predicted

Information

Schedule

Compatible

Resources

List

<X,D>

Fig. 1: PPSA architecture and interaction with the Performance Module.

For the applicability of PPSA on real environments, scheduling decisions
must be taken based on realistic performance information. For that purpose we
developed a Performance Estimation Module (PEM) that is in charge to provide
accurate performance information to PPSA.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 133

The information provided by the prediction module is required in two dif-
ferent times and contexts. All the information related with tasks outputs is
predicted before PPSA is invoked. The prediction of output sizes depends only
on the parameters and inputs provided to the tasks. And thus, the prediction of
such information can be calculated independently of the PPSA execution. The
predicted outputs size information is used by PPSA on the calculation of the
transfer times between two tasks A and B. The calculation of the transfer time
between two tasks is calculated as:

Ttx(A,B) = PEM.outputSize(A)/TRmachineA,machineB (1)

where PEM.outputSize(A) is the output size of the task A estimated by the
prediction module, to be transmitted to task B. And TRmachineA,machineB is
the transfer rate between the resources assigned to the tasks A and B.

In opposition to the output size information, the prediction of tasks execution
time is performed during the execution of PPSA. This information is used by
PPSA to decide if it is proper to assign the candidate resource to the evaluated
task. The calculation of the execution time of a task on a resource is calculated
as:

Tex(A,R) = PEM.executionT ime(A,R) (2)

where PEM.executionT ime(A,R) is the predicted execution time of the task
A on the resource R.

Next subsection details the characteristics of the estimation module and how
the performance prediction process is carried out.

3.2 Performance Estimation Module

For the achievement of good work�ow execution performance, the scheduling
decisions must be performed based on accurate tasks performance information.
Such information is provided by the Performance Estimation Module (PEM)
as was explained in the previous subsection. On �gure 2 a schema of PEM is
presented.

PEM uses the k-nearest neighbors (k-NN) technique [15], which belongs to
the family of non parametric regression methods. The k-NN algorithm makes
predictions based on the similarity of the instances included in the dataset. It is
worth noting that nonparametric regression techniques may require a consider-
able execution time in the case that a large number of instances are considered
in the prediction process. To address such issue, a method for keeping a man-
ageable size of the performance dataset is required. However, such issue is not
addressed in this work.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 134

k-NN Algorithm

PEM

Predicted

execution

time

Predicted

output

size

Performance

Datasets

Execution Time

Estimation

Output Size

Estimation

-task parameters

-task inputs

-resource attributes -task parameters

Fig. 2: Performance Module Architecture.

Task Performance Dataset For the maximization of the e�ciency of the
prediction method it is convenient to maintain separate datasets for each type of
task. This is reasonable since the fact that components of work�ows are reusable.
In Figure 3 the header of the performance dataset for a task called weka-kmeans.
The performance database is expressed in the Attribute Relation File Format
(ARFF) [15].

@relation weka-kmeans-performance

@attribute in-dataset string

@attribute arg-numberOfClusters numeric

@attribute out-output-size numeric

@attribute mach-TotalCpus numeric

@attribute mach-CpuFrequency numeric

@attribute mach-JavaMFlops numeric

@attribute mach-TotalMemory numeric

@attribute time numeric

@data

Fig. 3: Header of the performance database of the Weka K-means Clustering
task.

The ARFF �le for the K-means task type maintains information about: i) the
input of the task (in-dataset); ii) the task arguments (arg-numberOfClusters);
iii) the size of the task output (out-output-size) measured in number of bytes;
iv) the information of the used resource (mach-TotalCpus, mach-CpuFrequency,
mach-JavaMFlops and mach-TotalMemory); and v) the execution time of the task
(time) measured in seconds. Next section details how the performance database
are used in the prediction of the performance information.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 135

Prediction Scheme The current version of the framework estimates the infor-
mation using the k-Nearest Neighbors (k-NN) algorithm. Such algorithm selects
the most similar instances to a given query instance among those that are com-
prised in a dataset. To do that, the algorithm computes a distance measure of the
query instance and the dataset instances. Then retrieves those k instances with
the smallest distance to the query instance. An average of the interest attribute
(execution time or output size) for each one of the k instances is computed. Note
that both the execution time attribute as the output size are of type numeric.

From the analysis of the attributes included on a performance dataset, three
di�erent groups can be identi�ed: task attributes,machine attributes and the time
attribute. Depending on the type of prediction required by PPSA, such attributes
are included or ignored in the prediction process. The attributes selection is
performed as follows:

� For the estimation of the size of a task output, the corresponding perfor-
mance dataset is used but attributes related with other outputs (a task can
have more than one output) are ignored such as well as the attributes related
with the computational resources. The size of a task's output only depends
on the inputs and arguments of such task.

� For the estimation of the execution time of a task, the corresponding perfor-
mance dataset is used but, this time, the attributes related with the plugin
outputs are ignored. This way, the prediction algorithm only considers the
information related with the task inputs and arguments, and the character-
istics of the resources. All that information have direct relation with the �nal
execution time of the task.

For each type of prediction the corresponding query instance is constructed
including the same attributes considered by the k-NN algorithm.

4 Myopic Scheduling Algorithm

A simple but well known scheduling algorithm for work�ows is the Myopic Al-
gorithm [16]. It schedules tasks in a just-in-time manner selecting the most con-
venient resource each time. The algorithm takes all the ready-to-execute tasks
of the work�ow and selects the resource that is expected to complete the task
earlier. When all tasks have been scheduled the algorithm �nishes. Pseudo-code
of the algorithm is shown in Algorithm 1. The myopic algorithm has been imple-
mented on a number of production Grid work�ow systems such as Condor [17]
DAGMan [18,19] and the ASKALON [16,20,21] work�ow management systems.

Algoritmo 1 Myopic scheduling algorithm.

while ∃task not completed do

task ← get ready task whose parents have been completed

resource ← get a resource which can complete task at the earliest time

schedule task on resource
endwhile

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 136

Note that the method for resource selection does respond to any given order
and thus it can impact on the performance of the scheduled work�ows.

For the purposes of this work, a prototype of the Myopic algorithm was im-
plemented. The developed algorithm selects, each time, the resource that has the
best processing capacity. Because, experiments conducted were considering java-
based tasks, such processing capacity is represented by the number of MFlops of
the resource's Java Virtual Machine. A more detailed explanation about work-
�ow sub-tasks is given in next section.

5 Experiments and Results

For studying the enhancement of PPSA in comparison with the Myopic algo-
rithm a set of experiments was designed according to the characteristics of real
work�ow applications. Both algorithms were used for the scheduling of work�ows
of di�erent characteristics. Such work�ows were generated in a random fashion.
Generated work�ows are composed by the real prede�ned executable tasks.

5.1 Work�ow Generation

For the purpose of the experiments, a set of work�ow applications was con-
structed in a similar way to the one described in a previous work [11]. The
details of the work�ow generation process are described as follows.

Work�ows can be typi�ed based on a tuple ⟨n, δ⟩ where: i) n, is de�ned as
the number of tasks comprised in the work�ow; and ii) δ, is the work�ow density
factor that is directly related with the number of dependencies between tasks.
The factor δ ranges between 0 and 1, and it is a measure of the degree of inde-
pendence between tasks in a a work�ow. If δ is lower, the tasks in the work�ow
are highly independent, and if δ is greater tasks have more dependencies. Work-
�ows with lower values of δ are often harder to map due to the large number
of independent tasks. By knowing the tuple ⟨n, δ⟩, it is possible to calculate the
number of dependencies d of a work�ow as:

d = δ × dMax (3)

where dMax is the maximum possible number of dependencies of a work�ow
with n jobs, dMax can be calculated as:

dMax = n× (n− 1)/2 (4)

To test the performance of the scheduling algorithms, sample work�ows were
randomly generated with a number of tasks n ranging from 10 to 100 step by
10 and densities of 0.4, 0.6 and 0.8. For each work�ow family de�ned by ⟨n, δ⟩,
10 di�erent sample work�ows were generated. The work�ows are constructed by
tasks of three di�erent types. The output of each work�ow task represents data
that is transferred to all its successor tasks. The details about the work�ow tasks
are discussed in the next subsection.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 137

5.2 Work�ow Tasks

In order to carry out the experiments under more realistic conditions, typical
datamining algorithms and operations [15] were selected as tasks for work�ow
composition. As explained in the previous subsection, the tasks of the generated
work�ows corresponds to three di�erent types. The three types of tasks are
detailed as follows:

� Data stage-in: This task in in charge of the retrieval of a dataset from a
repository. This tasks receive as argument the name of the required dataset.
The task is responsible for transferring the required dataset to the machine
where it is executing. Such task is implemented as a single data transfer
between two machines.

� Clustering Task : This task groups instances present in a dataset. This task
receives as input a dataset to clusterize and a parameter indicating the num-
ber of desired clusters. The clustering task uses the K-means clustering al-
gorithm included in the Weka library [22].

� BayesNet Task : This task is in charge of the construction of a Bayesian
model representing the data. The Bayes classi�cation task uses the Bayesian
Classi�er included in the Weka library [22].

The use of this kind of tasks reduces the gap between the simulation and the
real characteristics and requirements of production work�ows. Such tasks were
de�ned as part of an ongoing work on the gridi�cation of the XGENE.ORG [23]
application for cross-genome cross-organism expression data analysis.

5.3 Tasks Performance Data

As explained on subsection 3.2, PEM requires the availability of performance
information for each task type. Such information was obtained by executing sev-
eral instances of the task types detailed in the previous subsection, varying the
inputs and parameters for each one. Such tasks were executed over a number of
computing resources with di�erent characteristics. The characteristics of the re-
sources used are summarized in table 1. The interconnection bandwidth between
resources is 100 Mbps.

Table 1: Characteristics of the Computing resources.

Resource Type Total Cpus Cpu Frequency Java MFlops Total Memory

Tesla 1 3.0 GHz 285.45 3 GiB

Sikus 2 1.87 GHz 600.04 2 GiB

Anika 2 2.0 GHz 379.70 2 GiB

The generated datasets include 186, 90 and 450 execution instances for the
tasks data stage-in, clustering and classi�cation respectively.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 138

5.4 Results

This subsection presents the results obtained in a preliminary study of the behav-
ior of the two scheduling algorithms previously discussed. The study consists on
the scheduling of 300 di�erent work�ow applications using both, PPSA and the
Myopic algorithm. The set of available resources was composed by 6 machines
with similar characteristics of those presented on Figure 1, and an interconnec-
tion bandwidth of 100 Mbps was assumed. For comparing the performance of
both algorithms, the makespan metric is used. Results are separated on three
groups according to the di�erent work�ow densities (i.e. values of δ).

In sub�gure 4a, the results obtained for work�ows with density δ = 0.4 are
presented. The �gure presents the average makespan for work�ow groups with
the same number of tasks (i.e. with the same value of n). In all the cases, PPSA
presents smaller makespans that the Myopic algorithm. The �gure also shows
the standard deviation of the computed makespans. The makespans obtained
by the Myopic algorithm present a large standard deviation in comparison with
those obtained by PPSA.

Sub�gures 4b and 4c, present the results for work�ows with density δ = 0.6
and δ = 0.8 respectively. As in the case of work�ows with density δ = 0.4,
PPSA overcomes the Myopic algorithm in terms of makespan minimization and
presents a small variability in the results obtained.

In general it can be seen that the Myopic algorithm presents high standard
deviations on the obtained makespans. These deviations can be explained on the
opportunistic behavior Myopic algorithm. A bad selection of resources in earlier
tasks may a�ect the overall makespan of the work�ow. In opposition, PPSA
presents less variability in the results obtained (i. e. PPSA presents a more
deterministic behavior). That is because it considers more resource assignments
and thus mitigates the e�ects of non proper resource selections. Another point
to note is related with the mean makespans of the Myopic algorithm. It can be
seen that there is not a clear tendency in the mean makespan values obtained
by the Myopic algorithm.

For measuring the degree of improvement of PPSA in comparison with the
Myopic algorithm, the speedup measure is used. The makespan speedup for each
group of work�ows with the same values of δ and n, is calculated as:

Sn,δ =
TMyopic
n,δ

TPPSA
n,δ

(5)

where TMyopic
n,δ is the average scheduling makespan for work�ows with n num-

ber of tasks and a density of δ, by using the Myopic algorithm. And TPPSA
n,δ is

the average scheduling makespan for work�ows with n number of jobs and a
density of δ, by using PPSA. In �gure 5 the speedups for work�ow families with
densities 0.4, 0.6 and 0.8 (wfδ=0.4, wfδ=0.6 and wfδ=0.8) are presented.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 139

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 10 20 30 40 50 60 70 80 90 100

M
ak

es
pa

n[
s]

Number of Tasks

Myopic
PPSA

(a) Makespans for work�ows with density δ = 0.4.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 20 30 40 50 60 70 80 90 100

M
ak

es
pa

n[
s]

Number of Tasks

Myopic
PPSA

(b) Makespans for work�ows with density δ = 0.6.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 20 30 40 50 60 70 80 90 100

M
ak

es
pa

n[
s]

Number of Tasks

Myopic
PPSA

(c) Makespans for work�ows with density δ = 0.8.

Fig. 4: Makespans obtained for work�ows according to the three dependency
factors.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 140

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 10 20 30 40 50 60 70 80 90 100

S
pe

ed
up

(S
δ)

Number of tasks

wfδ=0.4 wfδ=0.6 wfδ=0.8

Fig. 5: Speedups obtained for each work�ow family.

It can be seen that the speedup curves does not follow any speci�c pattern.
The shape of such curves is because of the high variability of the schedules
generated by the Myopic algorithm.

To obtain a representative measure of all work�ows with a particular value
of δ. The average speedup for δ is calculated as:

Sδ = avg(Sn,δ) n = 10 . . . 100 step by 10 (6)

The average speedups obtained for the three values of δ were: S0.4 = 1.38,
S0.6 = 1.48 and S0.8 = 1.77. Best speedups were obtained on more dense work-
�ows (largest values of δ). This is because such kind of work�ows present a
smaller degree of parallelism and thus have critical paths with a biggest number
of tasks. And then, delays introduced by the selection of non-proper resources
impact on the overall makespan. The speedups can be expressed as percent-
ages of the work�ow makespan improvements with the expression: perc(S) =
(1− 1/S)× 100%. In table 2 a summarization of the speedup values is given.

Table 2: Average speedups and average, maximum and minimum speedup per-
centages.

δ Speedup(Sδ) perc(Sδ) min{perc(Sn,d)} max{perc(Sn,d)}

0.4 1.38 26% 6% 41%

0.6 1.48 31% 17% 46%

0.8 1.77 42% 34% 49%

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 141

6 Concluding Remarks

This paper describes the performance prediction work�ow scheduling algorithm
(PPSA). PPSA is tightly coupled with Nonparametric Regression (NR)-based
performance prediction module. In order to test PPSA, a set of simulation ex-
periments was conducted. Real tasks execution data was used to feed the per-
formance prediction module. A set of work�ows composed by three di�erent
task types was randomly generated. For measuring the quality of the results of
PPSA, the generated work�ows were also scheduled with the Myopic algorithm,
which is integrated in well known production middlewares such as DAGMan and
ASKALON.

Results of a preliminary study showed that PPSA overcomes the quality of
the resource mappings in comparison with the Myopic algorithm. The work�ow
makespans of PPSA schedules are smaller in comparison with the ones generated
by the Myopic algorithm. Average makespan reductions of 1.38 were obtained
for work�ows with density δ = 0.4. For work�ows with a density δ = 0.6 the
makespans were reduced in a 1.48. Finally, for work�ows with a density δ = 0.8
the makespans were reduced in a 1.77. In the best case the makespan reduction
was 49% and the worst was 6%. Such range of makespan improvements are
produced because of the high variability in the makespan obtained by the Myopic
algorithm. The average makespan reductions obtained were 24%, 31% and 39%
for work�ows with densities δ = 0.4, δ = 0.6 and δ = 0.8, respectively.

Although PPSA presents exponential complexity on the number of work�ow
tasks, it still produces reduced makespan schedules in an acceptable time without
degrading the overall performance.

Currently, we are working on studies to determine which is the proper size of
the performance datasets. The performance datasets need to be small enough to
allow fast predictions without loosing the accuracy of the estimated information.
We are studying mechanisms for the maintenance of the datasets need to be
studied.

Additionally, we are working on the development of a framework for dis-
tributed data mining (DDMF) and the adaptation of the XGENE.ORG appli-
cation for its execution on grid environments.

7 Acknowledgements

The �rst author want to thank CONICET, for the PhD fellowship granted. The
�nancial support provided by ANPCyT through PAE-PICT 2312 project. Also,
�nancial support through MINCyT (Argentina) and MEYS (Czech Republic)
bilateral cooperation project, identi�ed by codes RC0904 and MEB111005 re-
spectively, is gratefully acknowledged.

References

1. Jia Yu and Rajkumar Buyya. A taxonomy of work�ow management systems for
grid computing. Journal of Grid Computing, 3:171�200, 2005.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 142

2. Fatos Xhafa and Ajith Abraham. Meta-heuristics for grid scheduling problems.
In Fatos Xhafa and Ajith Abraham, editors, Metaheuristics for Scheduling in Dis-
tributed Computing Environments, volume 146 of Studies in Computational Intel-
ligence, pages 1�37. Springer Berlin / Heidelberg, 2008.

3. Jia Yu, Rajkumar Buyya, and Kotagiri Ramamohanarao. Work�ow scheduling
algorithms for grid computing. In Fatos Xhafa and Ajith Abraham, editors, Meta-
heuristics for Scheduling in Distributed Computing Environments, volume 146 of
Studies in Computational Intelligence, pages 173�214. Springer Berlin / Heidel-
berg, 2008.

4. Brian Reistad and David K. Gi�ord. Static dependent costs for estimating execu-
tion time. SIGPLAN Lisp Pointers, VII:65�78, July 1994.

5. Jaehyung Yang, Ishfaq Ahmad, and Arif Ghafoor. Estimation of execution times
on heterogeneous supercomputer architectures. Parallel Processing, International
Conference on, 1:219�226, 1993.

6. Hong-Linh Truong, Thomas Fahringer, Georg Madsen, Allen D. Malony, Hans
Moritsch, and Sameer Shende. On using scalea for performance analysis of dis-
tributed and parallel programs. In Proceedings of the 2001 ACM/IEEE conference
on Supercomputing (CDROM), Supercomputing '01, pages 34�34, New York, NY,
USA, 2001. ACM.

7. Michael A. Iverson, Füsun Özgüner, and Lee Potter. Statistical prediction of task
execution times through analytic benchmarking for scheduling in a heterogeneous
environment. IEEE Trans. Comput., 48:1374�1379, December 1999.

8. Rich Wolski, Neil T. Spring, and Jim Hayes. The network weather service: a
distributed resource performance forecasting service for metacomputing. Future
Gener. Comput. Syst., 15:757�768, October 1999.

9. D. P. Spooner, S.A. Jarvis, J. Cao, S. Saini, and G. R. Nudd. Local grid scheduling
techniques using performance prediction. IEEE PROCEEDINGS COMPUTERS
AND DIGITAL TECHNIQUES, 150(2):87�96, 2003.

10. Ming Wu and Xian-He Sun. Grid harvest service: a performance system of grid
computing. J. Parallel Distrib. Comput., 66:1322�1337, October 2006.

11. David Monge and Carlos García Garino. Improving Work�ows Execution on DAG-
Man by a Performance-driven Scheduling Tool. In R. Orozco and A. Fernán-
dez, editors, Proceedings of the Third Symposium on High-Performance Comput-
ing (HPC2010) in Latin America, 39 JAIIO, volume 3, pages 3271�3285, Buenos
Aires, Argentina, Aug 2010. SADIO, SADIO.

12. David Monge and Carlos García Garino. A Constraint Optimization based
Scheduler for Distributed Computing Work�ows. In S. Castro and J. Orozco,
editors, Proceedings of the Second Symposium on High-Performance Computing
(HPC2009) in Latin America, 38 JAIIO, volume 3, pages 159�174, Mar del Plata,
Argentina, 2009. SADIO, SADIO.

13. David Monge and Carlos García Garino. Heurísticas novedosas de Constraint
Optimization aplicadas al Scheduling de Work�ows de Computación Distribuida.
In N. Sirsmovitsch, A. Mirasso, and A. P. Arena, editors, Anales del V Encuentro
de Investigadores y Docentes de Ingeniería 2009 - EnIDI 2009, volume 5, pages
122�136, Los Reyunos, San Rafael, Argentina, Nov 2009. UTN-FRM, UTN-FNSR,
UNCuyo-FI, UNCuyo-FCAI.

14. Ewa Deelman, Gaurang Mehta, Gurmeet Singh, Mei-Hui Su, and Karan Vahi.
Pegasus: Mapping large-scale work�ows to distributed resources. In Ian J. Taylor,
Ewa Deelman, Dennis B. Gannon, and Matthew Shields, editors, Work�ows for
e-Science, pages 376�394. Springer London, 2007.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 143

15. Eibe Frank & Mark A. Hall By Ian H. Witten. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufman, 3rd edition edition, Jan 2011.

16. Marek Wieczorek, Radu Prodan, and Thomas Fahringer. Scheduling of scienti�c
work�ows in the ASKALON grid environment. SIGMOD Rec., 34:56�62, Septem-
ber 2005.

17. Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. Beowulf cluster
computing with windows. chapter Condor: a distributed job scheduler, pages 307�
350. MIT Press, Cambridge, MA, USA, 2002.

18. Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the Grid, pages
299�335. John Wiley & Sons, Ltd, 2003.

19. Peter Couvares, Tev�k Kosar, Alain Roy, Je� Weber, and Kent Wenger. Work-
�ow management in condor. In Ian J. Taylor, Ewa Deelman, Dennis B. Gannon,
and Matthew Shields, editors, Work�ows for e-Science, pages 357�375. Springer
London, 2007.

20. Thomas Fahringer, Alexandru Jugravu, Sabri Pllana, Radu Prodan, Clovis Sera-
giotto, Jr., and Hong-Linh Truong. ASKALON: a tool set for cluster and Grid com-
puting: Research Articles. Concurr. Comput. : Pract. Exper., 17:143�169, February
2005.

21. Thomas Fahringer, Radu Prodan, Rubing Duan, Jüurgen Hofer, Farrukh Nadeem,
Francesco Nerieri, Stefan Podlipnig, Jun Qin, Mumtaz Siddiqui, Hong-Linh
Truong, Alex Villazon, and Marek Wieczorek. ASKALON: A Development and
Grid Computing Environment for Scienti�c Work�ows. In Ian J. Taylor, Ewa Deel-
man, Dennis B. Gannon, and Matthew Shields, editors, Work�ows for e-Science,
pages 450�471. Springer London, 2007.

22. Mark Hall, Eibe Frank, Geo�rey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The weka data mining software: an update. SIGKDD Explor.
Newsl., 11:10�18, November 2009.

23. Mat¥j Holec, Ji°í Kléma, Filip �elezný, Ji°í B¥lohradský, and Jakub Tolar. Cross-
genome knowledge-based expression data fusion. InWilliam Loging, Mukesh Doble,
Zhirong Sun, and James Malone, editors, International Conference on Bioinfor-
matics, Computational Biology, Genomics and Chemoinformatics (BCBGC-09),
2009.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 144

