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Abstract. In this work, a biologically-inspired denoising method for
audio signals is presented, which takes advantage of an approximation
to the acoustical signal representation at the auditory cortical level. It
is based on an optimal dictionary of atoms, estimated from early audi-
tory spectrograms, and the Basis Pursuit algorithm to approximate the
cortical activations. The proposed approach employs non-negative sparse
coding to pursue a simplified denoising algorithm which exploits a priori

information from both clean signals and noise. The method was applied
to artificial signals constructed from simultaneous chirps, corrupted with
additive noise. Results showed that using an objective quality measure,
the method proposed here can improve the audio quality when it is ap-
plied to noisy signals.

1 Introduction

In previous years, the classic techniques of signal analysis, for ex-
ample spectral subtraction, have been applied to audio and speech
denoising with relatively good results in controlled conditions [1].
However, it is widely known that the performance of these tech-
niques in adverse environments is far from that of a normal human
listener. On the other hand, there is an increasing number of new
signal processing paradigms that promise to deal with more com-
plex situations. This is the case with sparse coding and compressed
sensing [2]. Their ability to efficiently solve challenging signal repre-
sentation problems could be exploited in order to develop new audio
and speech processing techniques.
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For many years, researchers in the field of signal processing have
benefited from the use of methods inspired by human sensory mecha-
nisms. An examples of this for data encoding are the well-known per-

ceptual linear prediction coefficients. Also, auditory representations
of audio signals at the cochlea have been widely studied. Different
mathematical models have been developed that allow the estimation
of the so-called early auditory spectrogram. These investigations en-
abled an accurate modeling of the discharge patterns of the auditory
nerve [3].

Although less well known, the underlying mechanisms at the level
of the auditory cortex have also been studied and modeled [4]. Given
a sound signal, a pattern of activations can be found at the primary
auditory cortex, which encodes a series of meaningful cues contained
in the signal. This representation seems to use two principles: the
need for very few active elements and the statistical independence
between them [5]. This behavior of the cortical neurons could be em-
ulated using the fundamentals of sparse coding (SC), the indepen-

dent component analysis (ICA) and the notion of spectro-temporal

receptive fields (STRF), defined as the required optimal stimulus so
that an auditory cortical neuron responds with the largest possible
activation [6].

In a previous work [7], time-frequency representations of the audi-
tory spectrograms of speech signals were used to estimate an optimal
dictionary with the Noise Overcomplete ICA (NOCICA) algorithm
[8]. Each two-dimensional atom can be thought as a STRF. Then,
the approximated auditory cortical representation (AACR) was com-
puted using Matching Pursuit (MP), as the set of activations that
form a particular pattern. The AACR approach was applied to a
phoneme classification task in clean and noisy conditions, showing
the advantages and robustness of the method5.

In this work, a non-negative matrix factorization (NMF) frame-
work for auditory cortical representation is used in order to propose a
novel audio denoising algorithm. NMF is a recently developed fam-
ily of techniques for finding parts-based, linear representations, of
non-negative data [10] (like our auditory spectrograms). This means

5 This concept of cortical representation is slightly different from the one applied in
neuroscience, where studies about brain activity involves to analyze the cortical
areas that are mainly stimulated by viewing images or listening words [9]
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that the data is described by using just additive components, e.g.
a weighted sum of only positive STRF atoms. This new model still
retains its biological analogy, in spite of the fact that positive STRF
implies only non-inhibitory behaviour. The proposed algorithm takes
advantage of a mixed overcomplete dictionary that combines atoms
estimated from clean and noisy signals. The idea of using a cortical
model for audio denoising was also proposed by Shamma in a recent
work [4]. The main differences with our approach are that his corti-
cal representation uses the concept of spectrotemporal modulation
instead of sparse coding and the way he incorporates information
about signal and noise.

The organization of the paper is as follows. Section 2 presents the
methods that produce the signal representation in the approximated
auditory cortical domain. Section 3 outlines the proposed denoising
technique. Section 4 presents the experimental framework and data
used in experimentation. Section 5 shows the obtained results and
the discussions. Finally, Section 6 summarizes the contributions and
outlines future research.

2 Sparse representation of the signal

2.1 Early auditory model

Shamma et al proposed a model of audio processing carried out in
the auditory system based on psychoacoustic facts found in physio-
logical experiments in mammals. The main idea behind the model is
first to obtain a representation of the sound in the auditory system.
Then, it further decompose this representation to its spectral and
temporal content in the cochlear response [4].

While the complete model of Shamma consists of two stages, in
this work only the first stage was used. It first produces the auditory

spectrogram, an internal cochlear representation of the pattern of
vibrations along the basilar membrane. This part of the model is
implemented by a bank of K = 128 cochlear filters that process the
temporal signal s and yield the outputs by convolution

xk

ch = s ∗ hk, (1)

where hk is the impulse response of the k-th bandpass filter. These
outputs are transduced into auditory-nerve patterns using:
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xk
an = ghc

(

∂tx
k

ch

)

∗ µhc, (2)

where the derivative ∂t represents the velocity fluid-cilia coupling
(highpass filter effect), ghc the nonlinear compression in the ionic
channels (sigmoid function of the channel activations) and µhc the
hair-cell membrane leakage modeling the phase-locking decreasing
on the auditory nerve (lowpass filter effect) [4]. Finally, the lateral
inhibitory network is approximated by a first-order derivative with
respect to the tonotopic (frequency) axis, which is then half-wave
rectified as

xk

lin = max
(

∂fx
k
an, 0

)

. (3)

The output at each frequency band is then obtained by integrat-
ing this signal over a short window w, modeling a further loss of
phase locking, as

xk = xk

lin ∗ w. (4)

Finally, the time-frequency representation at the early stage is
composed in a matrix x by the set of K frequency-ordered outputs
obtained.

2.2 K-SVD algorithm for non-negative sparse coding

The representation of a signal x ∈ R
N (in column vector form) is

given by a linear combination of the atoms found by the auditory
model, in the form

x = Φa, (5)

where Φ ∈ R
N×M is the dictionary of M atoms and a ∈ R

M are the
coefficients that represents x in terms of Φ. The sparsity is included
when the solution is restricted to

min
a

‖a‖0, (6)

where ‖·‖0 is the l0 norm that counts the number of non zeros entries
of the vector.

In order to find the required representation, two problems have
to be jointly solved: the estimation of a sparse representation and
the inference of a specialized dictionary. The coefficients found with
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methods such as Basis Pursuit (BP) or MP give both atoms and
activations with positive and negative values [11]. However, in some
applications it could be useful to work only with positive values,
thus providing the method with the ability to explain the data from
the controlled addition of (positive) atoms. This is the objective of
non-negative matrix factorization methods.

Aharon et al introduced the K-SVD as a generalization of the k-

means clustering algorithm to solve the representation problem [12].
Moreover, they included a non-negative version of the BP algorithm,
named NN-BP, for producing non-negative dictionaries. The method
solves the problem

min
a

‖x −ΦLa‖ s.t. a ≥ 0, (7)

where a sub-matrix ΦL –that includes only a selection of the L largest
coefficients– is used. In the dictionary updating, this matrix is forced
to be positive by calculating

min
φk,ak

‖Ek − φka
k‖ s.t. φk, a

k ≥ 0, (8)

for each one of the k selected coefficients, with Ek being the error
matrix (residual between the signal and its approximation with the
k-th atom and respective activation being updated). The final algo-
rithm was called NN-K-SVD [12].

3 Auditory cortical denoising

The main idea of this work is that the audio containing the desired
sound and the noise signals can be projected to an approximated au-
ditory cortical space, where the meaningful features of each one could
easily be separated. The signals being analyzed could be decomposed
into more than one (possibly overcomplete) dictionary containing a
rough approach to all the features of interest. More precisely, the
method is based on the decomposition of the signal into two parallel
STRF dictionaries, one of them estimated from clean signals and
the other one from noise signals. The estimation of both dictionaries
is carried out after obtaining the respective two-dimensional early
auditory spectrograms.
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Given that this type of representation is essentially non-negative,
a natural way to obtain both the dictionary and the cortical activa-
tions is to use an algorithm like the above outlined NN-K-SVD. This
is especially true in the case of denoising applications, where forcing
non-negativity on both the dictionary and the coefficients may help
to find the building blocks of the signals [12]. Although in a previous
work we obtained the AACR using the NOCICA algorithm in the
context of a classification task [7], preliminary results in a denoising
task encourage us to further explore these ideas.

Fig. 1 shows a diagram of the proposed method, which consists
of two stages. In the forward stage, the auditory spectrogram is first
obtained. Then, using a combined dictionary with the most repre-
sentative atoms of signal and noise, the auditory cortical activations
that best represent the noisy signal (including both clean and noisy
activations) are calculated by means of the non-negative version of
the BP algorithm. In the backward stage, the auditory spectrogram
is reconstructed by taking the inverse transform from only the coeffi-
cients corresponding to the signal dictionary, discarding those of the
noise dictionary. Finally, the denoised signal in the temporal domain
is obtained by the inverse ear model [4]. The proposed method is
named NNCD, which stands for non-negative cortical denoising.

The reconstruction of the auditory spectrogram from the cortical
response is direct because it only consist of a linear transformation.
However, a perfect reconstruction of the temporal signal from the au-
ditory spectrogram is impossible because of the nonlinear operations
of the early stage. Nevertheless, objective and subjective quality tests
shown that the resulting quality is not degraded [3].

4 Experimental framework

A series of tests were carried out to demonstrate the capabilities
of the proposed technique. A first series of experiments were first
carried out on artificial “clean” signals constructed by a mixture of
chirps and pure tones. Noises with different frequency distributions
were additively added to the signals at several signal to noise ra-
tios (SNRs) and a second series of experiments were developed with
these data. The proposed technique was then applied to obtain the
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Fig. 1. Diagram of the proposed NNCD method for denoising in the cortical domain.
Top: forward stage (cortical representation). Bottom: backward stage (denoised recon-
struction).

denoised signals and the performance was evaluated by an objective
method: the raw PESQ scores.

4.1 Test signals and noise

A total of 1000 artificial signals were obtained by concatenating 7
different subsignal segments of 64 ms each at a sampling frequency
of 8 kHz. Each segment consisted of the random combination of up
or down chirps and pure tones. In order to restrict all the possible
combinations of these features so a relatively simple dictionary was
able to represent them, the spectrogram was divided in two frequency
zones, below and above 1200 Hz. Inside each zone only one of the
features could occur. Also, the frequency slopes of the chirps are
fixed in each zone.

Two kinds of noise with different frequency content were addi-
tively mixed. On one hand, white noise, which exhibits a relatively
high frequency content with a non-uniform distribution in the early
auditory spectrogram (due to its logaritmic frequency scale). On the
other hand, speech babble with mainly low frequency content in that
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representation. The white noise was generated by a HF radio chan-
nel and the babble noise was recorded in a crowded indoor ambient,
both taken from the NOISEX-92 database [13].

4.2 Cortical representation

The auditory spectrograms of clean signals were obtained and the
training data for the estimation of the dictionaries was extracted as
a series of sliding time-frequency windows without overlapping. The
same considerations apply to the estimation of noise dictionaries.
The dictionaries were generated with 512 atoms of size 64× 8 (com-
plete dictionaries). Here, the 64 coefficients correspond to a down-
sampled version of the original 128 coefficients representing the range
0-4 kHz. The 8 columns correspond each to a window of 8 ms.

From each dictionary, the most active atoms were collected and
combined to form dictionaries with 256 atoms containing both clean
and noisy features.

4.3 Quality measurement

The PESQ score is an objective quality measure introduced by the
International Telecommunication Union (ITU) as a standard for
evaluation of speech quality after transmition over communication
channels [14]. It uses an auditory representation based on bark scale
to compare the original and distorted speech signals. It has been
shown to be very well correlated with perceptual tests using MOS
[15] and robust speech recognition results [16]. Although only arti-
ficial signals were experimented in this work, we decided to use the
PESQ score given the similarities found in the energy variation of
chirps and speech formants, when analyzing their spectrograms.

The measure is calculated frame by frame, after frame delay
alignment and gain compensation, thus the method is insensitive to
time-varying delay and scaling. The signals are then compared in the
auditory domain using cognitive models to nonlinearly weight the
differences and produce two perceptually weighted time-frequency
differences: the masking thresholds of the human hearing (D), and
the amounts of frequency contents that are introduced by the trans-
mission method (A, manifested as musical noise). They are then
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Fig. 2. Example of spectro-temporal receptive fields (STRF) calculated from the early
auditory representation of artificial signals and white noise signals, showing the most
active atoms of each dictionary. The top 8 rows show the 64 most important STRF
for clean signals, whereas the last row show the respective STRF for the noise signals.
The dimensions of each atom follow the setup outlined in Section 4.2.

integrated over frequency using different p-norms and combined to
produce a single value, the raw PESQ score, defined as 4.5−αD−βA,
with α = 0.1 and β = 0.0309. The measure has an ideal value of 4.5
for clean signals with no distortion, and a minimum of -0.5 for the
worst case of distortion.

5 Results and discussions

5.1 Non-negative STRF dictionaries

Fig. 2 shows a selection from a dictionary where the 64 most active
atoms for chirp signals and 8 atoms for white noise signals are pre-
sented. It can be clearly seen the features captured by the STRF
corresponding to each dictionary are, respectively, the combination
of chirp and pure tones and the noise characteristics that are more
prominent in the training signals.
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Fig. 3. Example of the denoising of an artifical signal with a combination of 7 windowed
segments of random chirps and pure tones. The spectrograms (STFT) of the clean signal
(top), a noisy version obtained by the addition of white noise at SNR=0 dB (middle)
and the denoised signal (bottom) are shown. The temporal signal at the top of the
figure is given as reference.

5.2 Denoising of artificial signals

Our scheme for denoising was applied using the NNCD approach.
The reconstruction of the denoised auditory spectrogram was ob-
tained by selecting only the clean atoms from the 32 greatest activa-
tions selected by the NN-BP algorithm. Fig. 3 shows a well-known
analysis, the short-time Fourier transform (STFT) for a clean (top),
noisy with white noise at SNR=0 dB (middle) and denoised signal
(bottom), with the temporal signal above the clean spectrogram. In
the spectrogram shown at the bottom, the effects of the denoising
carried out in the cortical representation can be seen, where the most
important features are reconstructed.

Table 1 shows the PESQ scores obtained of denoising the articial
signals. For all cases there was an increase in the PESQ score when
the NNCD was applied to the noisy signals. The improvement was
more marked when the noise energy was higher (SNR=0 dB) and
smaller when the signals become cleaner at larger SNR (lower energy
of the noise).
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Table 1. Raw PESQ scores obtained for artificial signals.

Noise SNR (dB) Signal
Noisy Denoised

12 1.93 2.16
White 6 1.40 2.11

0 0.69 1.99

12 1.82 2.05
Babble 6 1.23 2.01

0 0.56 1.91

The PESQ score for the original (clean) signal after transforma-
tion using the auditory model and reconstruction back to the time
domain is 2.11. This score measures the distortion from the best
quality (PESQ MOS of 4.5) that is introduced by the use of the
early auditory model, which is only approximately invertible. Even
if the noise is completely removed by the NNCD, there is an intrinsic
error introduced by the auditory analysis method.

6 Conclusions

In this work, a biologically-inspired denoising method for sound sig-
nals was presented, based on the signal representation at the auditory
cortical level. Our approach employs non-negative sparse coding to
pursue a simple denoising algorithm which exploits a priori infor-
mation from both clean and noisy signals.

The method was applied to denoising of artificial signals, in the
presence of different types and levels of noise. The results demon-
strate that the proposed method can improve objective quality mea-
sures, mainly in severely degraded signals.

Future direction of research will attempt to optimize the denois-
ing at several SNRs and to explore the capabilities of this technique
as a preprocessing stage in robust recognition systems.
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