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Abstract. This paper presents an adaptive amplifier that is part of a sensor 

node in a wireless sensor network. The system presents a target gain that has to 

be maintained despite the presence of faults while its bandwidth must be as 

large as possible, without direct human intervention. The system is composed 

by a software-based built-in self-test scheme implemented in the node that 

checks all the available gains in the amplifiers, a reconfigurable amplifier and 

by a genetic algorithm (GA) for reconfiguring the node resources that runs in a 

host computer. We adopt for the node implementation a PSoC device from 

Cypress. The performance evaluation of the scheme presented is made by 

adopting two different types of fault-models in the amplifier gains. The fault 

simulation results show that GA finds the target gain with low error, maintains 

the bandwidth above the minimum tolerable bandwidth and presents a run time 

lower than an exhaustive search method.  

Keywords: Evolvable hardware, software-based built-in self-test, genetic 

algorithm, adaptive amplifier system, wireless sensor networks. 

1   Introduction 

Wireless sensor networks are implemented with a usually large number of sensor 

nodes. These nodes have the ability to communicate each other by means of wireless 

transmission. Usually, a host computer collects data from the sensors and performs 

different actions depending on the particular purpose of the system. A broad range of 

applications have been proposed for this kind of systems such as industrial sensor 

networks, environmental monitoring, home automation, medical and health care 

among others [1].  

In the above-mentioned applications, the nodes can operate under the action of a 

number of agents that potentially could degrade the system performance. If the 

application is critical, the system can require characteristics of safe operation, 

adaptation to a changing environment or ability for compensating degradations in its 
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own circuitry. For achieving this purpose, two related characteristics are necessary: 

fault detection and self-adaptation to a changing environment.  

A typical wireless sensor node comprises sensor processing and communication 

units. In this context, microcontrollers are god candidates for implementing part of a 

node because they offer some benefits. These include low cost and power 

consumption, ability to perform data processing tasks in the node and usually, 

powerful communication interfaces. In addition, modern microcontrollers (µCs) offer 

a wide pool of configurable digital and analog sections that enhance the chip ability 

for adapting to a broad range of applications. 

The programmable analog sections in µCs offer an alternative to traditional fault 

tolerant schemes because the reconfigurable nature of these devices enables runtime 

correction [2]. Additionally, although reconfiguration not always guarantees that a 

complete functionality can be restored, it allows maintaining the system operation 

with slight degradation [3].  

Particularly, evolvable hardware (EHW) is a methodology that combines 

reconfigurable hardware with evolutionary algorithms with the aim of adapting a 

system to changing environments or providing fault recovery. In this methodology, 

the designer establishes performance goals and a GA searches the possible hardware 

configurations for reaching them [2], [3]. Relevant work in the area of fault tolerance 

and fault recovery of electronic circuits can be found in [4-7]. 

EHW usually require a test strategy for detecting the presence of hardware faults in 

order to establish that it is necessary a reconfiguration. Regarding the test of 

configurable analog circuits, in [8], [9], is presented an on-line testing strategy for 

continuous-time field programmable analog arrays (FPAAs). In [10-12], techniques 

such as oscillation-based test and transient analysis method have been successfully 

applied to FPAAs for testing interconnection resources and basic building blocks. 

In this paper, we present an adaptive amplifier that is part of a sensor node in a 

wireless sensor network. The system presents a target gain that has to be maintained 

despite the presence of faults while its bandwidth must be as large as possible, 

without direct human intervention. We employ for implementing the GA a host 

computer, which is commonly used in sensor networks. The system is composed by a 

software-based built-in self-test (SW-BIST) scheme (implemented in the node) that 

checks all the available gains in the amplifiers, a reconfigurable amplifier and by a 

GA for reconfiguring the node resources that runs in a host computer. We adopt for 

the node implementation a PSoC device from Cypress. 

2   System Description 

PSoC device is a programmable system-on-chip platform with an on-chip processor 

core [13]. It includes configurable blocks of analog circuits, programmable 

interconnect and configurable IO in a low-cost chip. Analog functions in the device 

are organized as groups of general-purpose analog blocks that can be configured into 

user-determined functions. The control for these blocks is register-based and can be 

programmed through design tools or reprogrammed by the user at run-time. Some of 

the available configurations for the analog arrays are up to 14 bits analog to digital 
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converters (ADC), up to 9 bits digital to analog converters (DAC), programmable 

gain amplifiers (PGA), programmable filters and comparators. 

The PGA user module implements an operational amplifier based non-inverting 

amplifier with user-programmable gain (Fig. 1). This amplifier has high input 

impedance, wide bandwidth, and selectable reference. There are 33 programmable 

values for the PGA gain, ranging from 0.062 to 48 [14]. 
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Fig. 1. Programmable gain amplifier available in the PSoC® device (simplified diagram). 

  

We assume that each node of the wireless sensor network requires an adaptive 

amplifier. Particularly, the adaptive amplifier addressed in this work employs three 

PGAs. Fig. 2 shows the amplifier system present in one node of the sensor network 

and the interaction with the host computer. The three-amplifier chain (PGA1, PGA2 

and PGA3) is configured in the PSoC CY8C27443-24PXI.  

 

Fig. 2. Amplifier system diagram, normal mode. 

 

A measurement process (to be described in the next section) tests the gain of each 

amplifier during the dead times of the system. The node transmits the test data to the 

host for its evaluation. If the test finds a degradation in the gains, then establishes that 

is necessary a system reconfiguration.  

The reconfiguration involves the use of a GA running in the host computer. GA 

evolves the gain values of the three amplifiers with the goal of maintaining the system 

overall gain within specifications and the bandwidth as large as possible. The evolved 

values of gain are loaded into the hardware for continuing the normal operation. In 

PGA1 PGA2 PGA
3 

Configurable 
output 

PSoC device 

On-chip core 
processor 
 

External computer 
GA algorithm Gain values and 

configuration 

Analog modules 
 

Configurable 
input 

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 135



this work, it is assumed that the tolerable error in the global gain is lower or equal to 

the error in the gain values reported in the PGA datasheet, in our case ±5% of the gain 

nominal value [14]. This value could be redefined according to the application needs. 

3   PGA Gain Test 

The test of each PGA gain is a necessary step for achieving adaptation to a changing 

environment or for tolerating faults. For this process, we use the processor core, on-

chip analog resources and the dynamic reconfiguration characteristic of the PSoC 

device. In this way, this testing approach virtually eliminates the need for additional 

test-specific hardware. Based on this characteristic, this test proposal is contextualized 

as an embedded SW-BIST method [15-17]. 

When the gain test starts, a first PGA (PGA1 in Fig. 3) is disconnected from the 

chain. A nine-bit DAC connects to the PGA1 input a DC signal while a twelve-bit 

ADC converts the PGA1 output to a digital value. During the PGA1 gain test, the 

remaining amplifiers are not active. The on-chip processor calculates the gain value 

and establishes the communication with the external computer where is running the 

GA. The test process continues with the measurement (by means of reconfiguration) 

of the gain of the remaining amplifiers in a sequential way. 

Once the test is finished, the test data are transmitted to the computer. If 

degradation is detected, the GA evolves the system. After this process, the processor 

receives the new values of gain for the amplifier system.  

 
Fig. 3. PGA1 gain test diagram. 

4   EHW Overview 

In this work, we adopt an extrinsic EHW methodology [3]. As previously stated, GA 

must evolve the gain values of the three amplifiers with the goal of maintaining the 

system overall gain within specifications and the bandwidth as large as possible.  

For our case, we consider that the most important objective is to maintain the 

overall gain within specifications. This fact allows using the so-called apriori 

methods. One of these is the “ε-Constraint Method” that transforms a multi-objective 
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problem into another with a single objective. It performs the optimization with respect 

to an objective and transforms the others into restrictions [18, 19]. The use of this 

method allows employing traditional GAs, as the described in [2-3, 20].  

GA randomly generates (with uniform probability) an initial population of 

individuals that are possible solutions to the problem. Each solution in the population 

is a string of bits, also called chromosomes, or genotypes. For every evolutionary 

step, known as a generation, the individuals in the current population are evaluated 

according to some predefined quality criterion called the fitness function. To form a 

new population (the next generation), individuals are selected according to their 

fitness; high-fitness individuals present better chances to appear (“survive”) in the 

next generation, while low-fitness ones are more likely to disappear.  

Constrained optimization problems require the use of some methods in order to 

apply constraints in the problem solving. The penalty is a technique for dealing with 

the constraints. By using this technique, the solutions violating the restrictions are 

modified in their fitness values (based on the violation degree) in order to decrease 

their chance of being selected. 

Genetically inspired operators, crossover and mutation generate the individuals for 

the next generation. The crossover operator selects two individuals, called parents, 

and exchanges parts of their information (the string of bits) to form two new 

individuals, called offspring. In its simplest form, bits from one parent are exchanged 

for bits from the other parent, creating two offspring. If the two parents do not 

undergo the crossover operation, they are copied unchanged to the new pool of 

individuals.  

The mutation operator is applied to the new pool of individuals produced after the 

application of crossover. This operator prevents premature convergence to local 

optima by flipping bits (of individuals) at random with some probability. After 

mutation, a new generation of individuals is produced. This new generation goes 

through the process described above, from the fitness evaluation to the mutation step. 

The cycle repeats until a stop criterion is met, such as a maximum number of 

generations is reached or a desired solution is found. 

5   Genetic Algorithm Parameters 

The GA has to find the three PGA gain values (G1 for PGA1, G2 for PGA2 and G3 for 

PGA3) that reach the condition: 

Min( |Atar – G1 . G2 . G3| ) 

subject to BW ≥ ε. 

  (1) 

In (1), Atar is the target gain and ε is the minimum tolerable bandwidth (BW) of the 

system. 

The bandwidth of the adaptive amplifier is found as the real positive solution to the 

eq. (2) [21]. For formulating this equation, it is assumed that each PGA is modeled as 

a first order system, as reported by the vendor. 

21
3

1

2


























k pk

BW .    (2) 

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 137



 

In (2), pk is the k-th pole of each PGA. Its value is calculated as:  

 

pk = GBWP/Gk ,   if Gk ≥ 1; 

pk = GBWP,   if Gk < 1.  

    (3) 

In (3), GBWP is the gain bandwidth product reported by the vendor and Gk is the 

gain of the k-th amplifier. 

For simplifying the operation of the GA, the equation of the fitness function (f) is 

formulated for obtaining a maximum [2]: 

f = B –  |Atar – G1 . G2 . G3|,
 

(4) 

where B is a constant added for avoiding negative numbers.  

For the PGA gain values, it is used a simple binary codification. The creation of 

the population in the first cycle of the algorithm is made by using uniform 

initialization. The population size is 30, and the number of generations is 30. The size 

of the population is chosen according to the guidelines of [20] and ensures that the 

probability of finding a binary value 1 or a binary value 0 at each position in the 

chromosome exceeds 99.9%. The fitness of each individual is calculated using (4). 

The individuals that present an overall gain within specification and a bandwidth 

greater than or equal to ε are modified in their fitness. The individuals with higher 

bandwidth are assigned with higher fitness. This change is an increase proportional to 

the difference between the current bandwidth of the individual and ε: 

NewFitness = CurrentFitness +CurrentFitness .[(CurrentBandwidth – ε)/ ε].
 

(5) 

On the other hand, the individuals with BW below ε, even if they present a gain 

within specification, are penalized by diminishing his fitness in a proportional way to 

the difference between ε and its current bandwidth: 

NewFitness = CurrentFitness – CurrentFitness.[(ε– CurrentBandwidth)/ ε].
 

(6) 

The selection of the individuals for the crossover is performed through the method 

of the rotating roulette. The probability of being selected for an individual is 

proportional to its fitness. The probability of crossover and mutation are both fixed in 

0.5. These values are chosen using previous experimental guidelines [4, 20].  

6   Experimental Results 

6.1   PGA Gain Test  

The gain test was performed in four different PSoC® devices at two different 

temperatures (25°C and 50°C). All the measurement errors showed values close to 

those reported in the PGA datasheet [14]. Additionally, it was found that the relative 

error between the programmed gain (expected value) and the measured gain was 

below 5% in the range of gain values [0.062-8]. We observed wide deviations from 

the expected values (outside the above-mentioned gain range), when chip-to-chip or 
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intra chip (between PGAs of the same chip) comparisons are made and an erratic 

behavior at different temperatures. For this reason, we limit the range of possible 

values of gain to this range for lowering the error when applying the EHW technique. 

Fig. 4 shows one of the PGA gain test results [22]. 
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Fig. 4. Errors in the test gain process. Fault-free operation at 25°. 

6.2   Fault Free Operation 

We use in the GA the gains values obtained during the gain test process and consider 

that they are all available. We propose three different values for the target gain (Atar): 

2, 8 and 15 with the aim of evaluating the ability of GA for finding an acceptable 

solution in different scenarios. We set the value of the minimum -3dB BW (ε) in 

4E+06 rad/s (636 kHz), as the minimum acceptable value for future applications. 

The distribution of the obtained results can be observed in the dispersion diagram 

depicted in Fig. 5. This figure shows the relative error of the gain versus the 

bandwidth for the three target gains for several runs of GA. Each point is a solution to 

the optimization problem changing the seed for the random generation of the first 

population (see Section 5). In this way, we evaluate the GA performance with 

different initial populations. From the figure, the three target gains present relative 

errors in the range [-4.60%, 4.92%]. The lowest BW obtained for all the evaluated 

gains is 4.23E+6 rad/s, above the required. 
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Fig. 5. Gain relative error versus bandwidth. Fault-free operation. 

Table 1 shows a characterization of the gain relative error for the three target gain 

values. We adopt the median as a measurement of central tendency because the data 

distribution is not normal. We also present the maximum, minimum and range values 

as a measurement of dispersion. We found that the error range for all the cases is 

below the required (+/- 5%). Additionally, the median of the relative error is close to 

zero for all target gains. 

Table 1. Gain relative error characterization under normal condition. 

Target 

Gain 

Median  

(%) 

Minimum  

error (%) 

Maximum 

 error (%) 

Error range 

 (%) 

15 0,34 -3,78 4,60 8,38 

8 -0,69 -4,55 4,92 9,47 

2 1,01 -4,60 4,56 9,16 

6.3   Operation under Fault Condition 

The performance of the scheme presented here is evaluated by means of fault 

injection. To this end, it is necessary to define a fault model.  

If the PGA is well designed, the operational amplifier can present wide deviations 

in its functional parameters without effects in its closed loop performance. 

Consequently, we consider that the main cause of PGA gain faults comes from faults 

or degradations in the resistances that establish the gain. In each PGA, we consider 

two different types of faults in the gain determined by the resistances Ra y Rb (Fig.1). 

The first one is a catastrophic fault that assume that is not possible to establish one 

gain value. The second fault is a deviation in the gain values. 

Because PGAs are embedded in the PSOC devices, it is impossible to inject faults 

directly in the hardware. For this reason, we adopt a different approach. For injecting 

a catastrophic fault, we eliminate from the search space used by the GA the gain value 

that it is assumed as faulty. For injecting deviation-faults, all the gains values in the 

search space are deviated by the same amount.  
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Fig. 6 depicts the results obtained under catastrophic fault condition for the PGA1, 

which presents the worst performance. The figure shows the relative error of the gain 

versus the bandwidth for the three target gains. Each point is a solution to the 

optimization problem when is removed a gain value in the PGA.  

 

Fig. 6. Gain relative error versus bandwidth. Catastrophic fault operation in PGA1. 

Table 2 summarizes the results under catastrophic fault conditions in the three 

PGAs. In this table, we grouped the results by gain value. Comparing the gain error 

results obtained from normal operation (Table 1) and catastrophic fault operation 

(Table 2), the faulty system presents as a worst case an increase of 0.53% in the error 

range for gain 2. The median of the relative error remains almost constant for gain 15, 

while for the other two gains presents variations, suggesting in these two cases that 

the error distribution changes between the normal and faulty operation. In all the 

experiments, the GA is capable of reaching the target gain, with errors for all the 

gains in the range [-4.98%, 4.89%]. The lowest BW obtained for all the simulated 

conditions is 4.23E+6 rad/s, above the required. 

Table 2. Gain relative error characterization under catastrophic fault condition. 

Target 

Gain 

Median  

(%) 

Minimum  

error (%) 

Maximum 

 error (%) 

Error range 

 (%) 

15 0,33 -3,89 4,60 8,49 

8 -0,47 -4,98 4,36 9,33 

2 0,82 -4,80 4,89 9,69 

 

For deviation faults, we consider that PGAs present a deviation in their gain values 

in a percentage of their nominal values, ± 10%, ±20%, ±30%, ±40% and ±50%. Fig. 7 

shows the deviation-fault simulation results for the PGA1, which presents the worst 

performance. The figure depicts the relative errors in the target gains versus the BW 

obtained for each deviation value in the gain. From the simulation results, it is 

observed that the GA is able to reach the target gain with errors for all the gains in the 

range [-4.91%, 4.85%] and BW greater than 4.10E+06 rad/s. Once again, in the worst 

case, the obtained BW is above the required.   
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Fig. 7. Gain relative error versus bandwidth. Deviation fault operation in PGA1. 

Table 3 summarizes the effects of deviation faults in the three PGAs. Comparing 

the relative error under normal (Table 1) and deviation fault conditions (Table 3), the 

faulty system presents an increase of 0.60% for gain 2, and a slight diminution for the 

other two gains, despite the presence of relatively high deviation faults.  

Table 3. Gain relative error characterization under deviation fault condition. 

Target 

Gain 

Median  

(%) 

Minimum  

error (%) 

Maximum 

 error (%) 

Error range 

 (%) 

15 -1,18 -4,76 4,59 9,35 

8 -0,79 -4,86 4,54 9,40 

2 -1,06 -4,91 4,85 9,76 

7   Comparison with Exhaustive Search Method 

For a better characterization of the efficiency of our genetic algorithm, we compare it 

with Exhaustive Search Method (ESM). This method consists of systematically 

enumerating all possible candidates for the solution and checking whether each 

candidate satisfies the problem statement [23]. We chose to perform this comparison 

due to the relatively low number of possible gain values achievable by the overall 

system (900 gain values). Under this condition, this brute force method looks like a 

serious competitor for heuristic methods. Particularly, it could appear that this method 

is considerably faster than GA. 

We performed the comparison using two parameters: number of objective function 

evaluations and run time. Table 4 shows the obtained results. The ESM must perform 

27000 objective function evaluations (eq.(4)) to find the best solution for normal 

operation and deviation fault operation. For catastrophic fault operation, this method 

must perform 26100 evaluations. By other way, the GA performs at most 900 

evaluations (population size x number of generations).  
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As can be observed from the results reported in Table 4, the number of objective 

functions evaluations has an important impact on the run time. The run time of GA 

shown is the median of the run time obtained in the worst case (for gain 15). In the 

worst condition (deviation fault), GA is 36.76 times faster than ESM. In the best 

condition (catastrophic fault), GA is 59.07 times faster than ESM.  

Table 4. Performance comparison between ESM and GA. 

 

On the other hand, we compare the bandwidth corresponding to the gain values 

obtained by the GA with the bandwidths obtained by using ESM under normal 

operation and faulty operation. The bandwidths for the GA are close to optimal 

bandwidths (obtained with the ESM) with the median between 16.61% and 26.96% 

lower. However, we emphasize that these results were obtained in considerably less 

time and with fewer objective function evaluations. 

8   Conclusions and Future Work 

We presented an adaptive amplifier implemented with programmable gain amplifiers 

in a PSOC device that is part of a sensor node in a wireless sensor network. The 

system is composed by a SW-BIST scheme that check all the available gains in the 

amplifier and by a GA for reconfiguring the chip resources that runs in a host 

computer. The GA presented is robust for the types of faults addressed in our 

evaluation. The fault simulation results show that the system maintains the overall 

gain and the bandwidth within specifications, despite the presence of catastrophic and 

deviation faults. In addition, its run time is considerably lower than of an exhaustive 

search method.  
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