
A System for Remote Management of Routers

in Heterogeneous Data Centers

Federico Mart́ın Casares1 and Rodolfo Kohn2

1 Instituto Universitario Aeronáutico - Córdoba, Argentina
fedecasares@gmail.com

2 Software and Services Group, Intel Corporation - Córdoba, Argentina
rodolfo.kohn@intel.com

Abstract. Data center complexity continues to increase and has be-
come one of the main barriers to business development and innovation.
Heterogeneity is one of the main factors contributing to this complexity.
To address this issue, organizations are moving towards manageability
standardization by adopting technologies and protocols recommended
by the Web Based Enterprise Management specification. However, in
the open source arena more solutions leveraging WBEM need to be de-
veloped. This paper describes an end-to-end system implementation to
manage GNU/Linux based routers using industry standards, which will
contribute to the goal of reducing data center complexity. The solution
comprises a number of components from a Perl-based user interface to
the corresponding CIM schema and providers that instrument the target
system to manage routes and interfaces. The entire system was tested in
a virtual environment including different virtual networks, servers, and
routers. This implementation represents a unique contribution to the
open source community.

1 Introduction

Internet Data Centers are relentlessly running mega infrastructures with hun-
dreds of thousands of servers and other special purpose devices executing the
billions of lines of code that make new applications and services consumed by
the Internet users. The maturity level of different technologies, encompassed by
the metaphor of Cloud Computing, has been crucial to the proliferation of these
applications. Indeed, the widespread adoption of virtualization, service-oriented
architectures, autonomic computing and utility computing is making it possi-
ble to offer a production infrastructure that can satisfy exploding computing
demand with a simple scalable model consisting of adding compute nodes to
clusters and resource pools [1]. This model has also driven down capital costs by
taking advantage of low-cost commodity servers in configurations of hundreds of
thousands of nodes [1] [2]. However, as a result of this trend, data center com-
plexity has dramatically increased [3] and there is a looming software complexity
crisis whose only solution may be autonomic computing [4] [5], i.e. systems with
self-management capabilities.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 108



One of the main elements adding to data center complexity is heterogene-
ity. Data centers are composed of different devices, from several vendors and
implemented with distinct and often incompatible technologies. It is possible to
find tens of thousands or racks supporting hundreds of thousands of different
commodity blades, NAS, SAN, load balancers, switches, routers, and different
networking technologies. Additionally, on the software side, it is possible to find
thousands of applications, different databases, operating systems, etc. It may be
impossible for IT administrators to handle such a variety of technologies while
trying to cope with the challenges the Internet poses: unpredictable workloads,
intrusions, as well as unprecedented demand for availability and lower costs,
among others.

It became obvious that only with the wide adoption of manageability stan-
dards can such complexity be managed [3]. Web-based Enterprise Management
(WBEM) [6] standards have been embraced by the Distributed Management
Task Force (DMTF) [7] as the solution for data center heterogeneity and they
are also considered an appropriate solution to enable autonomic computing in
heterogeneous data centers [8].

WBEM technologies are being implemented by almost all vendors. It is part
of the manageability solutions implemented by all recent Windows operating
systems, by VMWare in ESX servers, and it can also be found in Linux and
UNIX operating systems. Most vendors are implementing WBEM-based man-
ageability solutions for every device and environment. They can be found in
operating systems, virtualization technologies and even in the pre-boot environ-
ment as in [9] where a replacement for pre-boot Execution Environment (PXE)
is proposed. However, in the open source arena, even though some standards
were first implemented there, such as WS-Event in Openwsman [10], and there
are various projects, such as SBLIM, Open Pegasus, Openwsman, OpenWBEM,
OpenDRIM, and others, there is still a need for more innovations to enable
standard manageability.

This paper describes the work done in order to implement WBEM-based
manageability for routers and networking devices. The project involved the im-
plementation of the necessary instrumentation in a Linux-based router for remote
management of network routes and network interfaces. The Common Informa-
tion Model (CIM) and the protocol WS-Management were utilized. The solution
involved the creation of the CMPI-Router provider and the implementation of
the CMPI-Network provider interface offered by the open source project SBLIM.
Additionally, a unique client GUI using WS-Management protocol was created
and donated to the open source project Openwsman. The entire solution com-
bined open source products like SFCB (Small Footprint CIM Broker), SFCC
(Small Footprint CIM client), Openwsman, and Quagga (for routing protocols).
Finally, an original set of tests was executed in a completely virtual environ-
ment comprised of several servers and routers interconnected through virtual
networks. All of them were running on only one physical host.

The most important open source projects implementing WBEM components
are SBLIM (IBM), OpenDRIM, OpenPegasus, OpenWBEM, and Openwsman

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 109



(Novell). Currently, none of these projects offers providers that implement CIM
classes for routers. The SBLIM project offers a provider called CMPI-Network.
It is a basic implementation that we extended in order to cover our needs. In
addition, WBEM clients are oriented to developers rather than system admin-
istrators. Furthermore, none of these projects offer a comprehensive end-to-end
solution for routers management.

As a result of this work, it is now possible to remotely manage an impor-
tant set of routing functionalities in Linux-based routers using industry-accepted
standards. Thus, in the future, as other routers implement WBEM manageabil-
ity, system administrators will be able to operate different routers independently
of the various underlying technologies and vendors.

The rest of this paper is organized as follows. Section 2 specifies the technol-
ogy involved to accomplish our goal. Section 3 describes the solution architecture
and provides an explanation of its main components. Section 4 describes the vir-
tual environment used for testing and the results. Section 5 proposes possible
future expansions that could enrich the actual implementation. Finally, section
6 summarizes the experience and the contributions made.

2 Technologies Involved

The system implemented involved the standard technologies and protocols pro-
posed by the Distributed Management Task Force (DMT), the routing prototocol
OSPF -Quagga open source project-, and other Linux technologies.

2.1 Common Information Model (CIM)

CIM is an information model created to provide a conceptual view of distributed
systems. Its main goal is to unify management concepts and tasks independently
of different technologies and vendors. This permits systems administrators to
handle devices in a heterogeneous data center based on its purpose and func-
tionalities, abstracting from specific details. [11]

In order to cover all of the aspects of a managed environment, CIM was
divided into two parts, a specification and a schema.

The CIM specification defines the terms to express the model and its usage
and semantics, known as CIM meta-schema. [12]

The CIM Schema provides the descriptions of the actual model. It is com-
prised of a Core Model and a set of Common Models that extend from the
Core. The scope of the Common Models includes systems, services, networks,
applications, users, databases and other managament domains. [13]

The strength of CIM includes the richness of its information models and its
object-oriented representation, which allow integrators to extend from existing
classes to include vendor specific content. [13]

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 110



2.2 Web-based Enterprise Management (WBEM)

WBEM is a set of management and Internet standard technologies created to
unify the management of distributed computing environments. WBEM provides
the ability for the industry to deliver a well-integrated set of standard-based
management tools, facilitating the exchange of data across otherwise disparate
technologies and platforms. WBEM includes protocols, query languages, discov-
ery mechanisms, mappings, and anything else needed to exchange CIM informa-
tion. [12]

The DMTF has developed a core set of standards to enable WBEM. Adding
to CIM an encoding specification (xmlCIM) which specifies XML elements (de-
scribed in a Document Type Definition, DTD) representing CIM classes and in-
stances, and a transport mechanism (CIM Operations over HTTP) which defines
how the CIM classes and instances are created, deleted, enumerated, modified
and queried. Also, the specification defines a notification/alerting mechanism for
CIM data. [14]

2.3 Quagga

Quagga is a software suite that provides TCP/IP routing support to computer
networks through the implementation of related protocols.

It architecture brings extensibility, modularity and maintainability. It is made
from a collection of several daemons (modules) that work together to build
the routing table. There may be several protocol-specific routing daemons and
also zebra the kernel routing manager, which is responsible for changing the
kernel routing table and for the redistribution of routes between different routing
protocols. We can add, remove or update a module without causing a direct effect
on the other modules. Finally, if a module suddenly crashes, the whole system
is not compromised. [15]

Currently, Quagga support routing such as RIPv1, RIPv2, RIPng, OSPFv2,
OSPFv3, BGP-4, and BGP-4+. Quagga also supports special BGP Route Re-
flector and Route Server behavior. [15]

2.4 Linux Kernel

A kernel is a program that constitutes the central core of a computer operating
system. In order to perform actions or to obtain information about managed
resources, we must communicate through the kernel. The Linux kernel offers a
series of interfaces, known as sockets, allowing access to advanced network func-
tionalities. The Netlink socket is one of them. It provides a full-duplex communi-
cation link between the kernel and the user-space processes. Using this interface
we can manage desired resources, like routing tables and network interfaces. Con-
sequently, we made extensive use of Netlink sockets in the CMPI-router provider
which is described in following sections.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 111



3 Implementation

3.1 Architecture Overview

The diagram exhibited in figure 1 depicts the architecture of the WBEM/CIM
system implemented. In the list that follows a brief explanation about the com-
ponents is presented.

Fig. 1. System Architecture

– Programmer System: Based on a GNU/Linux architecture due to its
advantages related to software development, this system was used to create
the providers, the CIM Schema extensions and the WEB client.

– Models and Compiler: Both, the CIM standard (Core Model and Com-
mon Models) and its extensions, available in the programmer’s computer,
are processed by an MOF compiler (in this case mofc from SBLIM project).

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 112



Its purpose is to validate our extensions by generating an output intended
to be our CIMOM repository. Our extended MOF were processed by this
compiler, generating the outputs needed by SFCB repository.

– SFCC (small footprint CIM client): A C based API which makes com-
munications between the clients and the broker (CIMOM) possible. We used
this API to establish communications between SFCB and Openwsman.

– SFCB Interfaces: These interfaces allow communication between CIMOM
and external components.

– SFCB (Small Footprint CIM Broker): By using information models
available in the CIM repository, it manages direct communications between
WBEM components, such as providers and clients. Furthermore, it validates
the syntax and the semantics of the messages, providing a certain level of
security to the system. When we make a request through PlWSMan client,
SFCB is the responsible to contact providers and to gather the information
needed from specific managed resources. SFCB is a CIMOM implementation
of SBLIM project.

– CIM schema: The CIM Schema supplies a set of classes and associations
with properties and methods that provide a well-defined conceptual frame-
work within which it is possible to organize the available information about
the managed environment.

– CIM extended schema: Extensions to DMTF defined standard models.
In order to address our management needs, we extended the DMTF network
model, to handle specific routers characteristics.

– CMPI (Common Manageability Programming Interface): C based
programming interface, intended to provide the abstraction capability of
technology and terminology used by CIMOM. Our providers were developed
to be CMPI compliant.

– CIM Providers: Providers are special classes that communicate with man-
aged resources, to access related information or perform actions, and to
communicate it to SFCB. In order to provide access to router information
and to perform actions on it, existing providers (CMPI-base, CMPI-network,
CMPI-service and CMPI-syslog) were adapted and a new one was developed,
CMPI-router.

– Netlink Sockets: Communication interface between the providers and the
GNU/Linux kernel. Used when accessing managed resources.

– GNU/Linux Kernel: It is the bridge between the user-space and managed
resources. It represents the virtual abstraction of those resources.

– Openwsman: It provides WS-management capabilities to promote inter-
operability between management applications and managed resources. We
used Openwsman to allow communications between the remote clients and
the WBEM system.

– System Management Software (PlWSMan): This user interface en-
ables us to perform management actions over the system. Through its in-
tuitive interface, we were able to obtain information about the resources
managed, as well as to perform actions on them.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 113



3.2 Complete path

When the operator performs an action through the PlWSMan user interface, the
WBEM client sends a WS-Management request to the Openwsman daemon in
the WBEM/CIM server. Subsequently, Openwsman translates this request into
one or various CIM-XML commands and transmits those commands to the CIM
Broker (SFCB) by using SFCC API. After the validation of messages, SFCB
invokes the implemented providers to gather needed information or perform
desired action on a specific managed resource. Finally, the CMPI compliant
providers such as CMPI-Router and CMPI-Network execute the requested tasks
through interactions with GNU/Linux kernel (i.e. Netlink sockets).

3.3 CMPI-Network

The CMPI-Network implementation had no support for the RequestStateChange
method of Linux EthernetPort CIM class (class that provides capabilities and
management of an Ethernet port). This method allows us to establish the op-
erational status of an Ethernet interface by specifying the parameter Request-
edState. Given its importance to the management of network interfaces, we
implemented it using BSD sockets. Even though it is only one method, sev-
eral compatibility issues arose. The GNU/Linux kernel and the CIM class ex-
hibit differences in the manner in which they treat network interface properties.
For example, “Enabled”, “Disabled”, “Shut Down”, “Offline”, “Test”, “Defer”,
“Quiesce”, “Reboot” and “Reset” are the Ethernet Port states specified in the
CIM schema but the GNU/Linux kernel does not support all of them. More-
over, some specific information required to fill the CIM class is not available in
GNU/Linux systems.

3.4 CMPI-Router

The CMPI-Router is a totally new implementation of a CIM provider, intended
to offer router management capabilities for GNU/Linux systems. It was written
in C following the CMPI standard and the SBLIM provider architecture. Al-
though, its primary goal is to cover all CIM classes and associations related to
router manageability, the following have been implemented:

– Linux LANEndpoint: a communication endpoint which, when its asso-
ciated interface device is connected to a LAN, may send and receive data
frames. LANEndpoints include Ethernet, Token Ring and FDDI interfaces.

– Linux NextHopIPRoute: specifies routing in an IP network.
– Linux CSHostedRoute: associates the Computer System that scopes/provides

context for the route and the next hop route defined on the System.
– Linux RouteUsesEndpoint: associates a communication point from which

data can be sent or received and one of a series of ’hops’ to reach a network
destination.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 114



In order to provide access to managed resources the provider was divided
into three layers (as specified in SBLIM provider architecture):

– CMPI dependent layer: it implements the required CMPI APIs of the cor-
responding provider type. For example: “EnumInstanceNames”, “EnumIn-
stances”, “GetInstance”, “CreateInstance”, “SetInstance”, “DeleteInstance”
and the methods of the specific CIM class. It is the nexus with SFCB.

– CIM dependent layer: it contains CMPI / CIM dependent utility func-
tions and requires a CMPI / CIM environment. The main task is the imple-
mentation of the factory functions to create instances and object paths of
the class / association. [16]

– OS dependent layer: it is independent of the CIM technology and ab-
stracts the platform specific resource access. The module implements utility
functions to access the resource data. It offers the provider data structures,
which are similar to the provider type dependent interfaces, e.g. enumera-
tions of all entries. [16] The hard work was done in this layer, creating a
“Netlink layer” to interact with the GNU/Linux kernel and another inter-
mediate layer intended to convert data gathered from the “Netlink layer” to
CIM compliant structures.

Finally, we extended the CIM classes and associations in order to cover several
characteristics relevant to GNU/Linux systems not contemplated by default CIM
classes.

3.5 PlWSMan

PlWSMan is a WBEM client/listener implementation. Developed in Perl, and
using the bindings provided by Openwsman, it is a web-based GUI that allows
the user/administrator to monitor and execute actions on a remote computer
system (remote manageability).

PlWSMan is divided into two main parts: a core and several modules. The
core is composed of two libraries: plwsmanCGI.pm, responsible for the graphic
interface, and plwsman.pm, designed to manage communications with Openws-
man. Each module, in turn, represents an implementation for a particular CIM
class to monitor and execute actions related to that class.

Available modules:

– Linux BaseBoard: A computer board base representation.
– Linux ComputerSystem: A Computer System representation.
– Linux EthernetPort: An Ethernet Port available in a Computer System.
– Linux IPProtocolEndpoint: A Protocol Endpoint with IP capabilities.
– Linux LANEndpoint: A Communication Endpoint such as Ethernet, To-

ken Ring and FDDI interfaces.
– Linux LocalLoopbackPort: Representation of the Loopback virtual net-

work interface.
– Linux NextHopIPRoute: Specifies a route in an IP network.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 115



Fig. 2. PlWSMan Architecture

– Linux OperatingSystem: An Operating System running in a Computer
System.

– Linux OperatingSystemStatisticalData: A collection of Operating Sys-
tem statistical information.

– Linux Processor: A computer processor representation.
– Linux Service: A Service running in a GNU/Linux Operating System.
– Linux UnixProcess: A Unix process running in a GNU/Linux Operating

System.

4 Experimental Network

In order to test the implementation and to demonstrate its benefits as well as the
manageability opportunities stemmed from WBEM technologies, we created a
completely virtualized environment. This environment hosted a typical network
comprised of five different local area networks (LAN), three Linux based routers
(Markarian, Dumbbell, Blinking) and two computer nodes (Helix and Stingray).
It is worth noting that the whole environment run in only one physical machine
with following characteristics:

– Processor: Intel(R) Core(TM) 2 CPU E6700 @ 2.66GHz (Cache size: 4096
KB) IntelVT enabled.

– Mainboard: ASUSTeK P5N-E SLI.
– RAM Memory: Corsair 4GB PC2-6400 DDR2 DIMM Dual Channel Mem-

ory Kit.
– Hard Disk: Hitachi HDT725025VLA380 - SATA 3.0Gb/s - 500 GB.
– Video Card: ATI Technologies Inc Radeon HD 5870 - PCI-E 2.0 x16 -

Core clock: 850 MHz - Mem clock: 2400 MHz (4800 DDR) - Mem bw: 153.6
GB/sec - Mem type: GDDR5.

– Operating System: Fedora 12 x86 64.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 116



Fig. 3. PlWSMan User Interface

Figure 5 shows the deployment within our virtual environment. Below the
list of networks and the respective node’s interfaces used are presented:

– 192.168.1.0/24: Dumbbell/eth1 - Blinking/eth1
– 192.168.2.0/24: Dumbbel/eth2 - Markarian/eth1
– 192.168.3.0/24: Markarian/eth2 - Blinking/eth2
– 192.168.4.0/24: Blinking/eth0 - Stingray attached
– 192.168.5.0/24: Markarian/eth0 - Helix attached

Note 1. As you can see in figure 5, we specified the KVM multicast addresses for
all network interfaces. This KVM characteristic allows us to create KVM VLANs
shared among QEMU virtual machines using a UDP multicast socket, effectively
making a bus for every QEMU virtual machine with the same multicast address
“maddr” and port.

The interface eth0 in Dumbbell allowed us to establish connections with
external networks.

The virtualization infrastructure chosen was KVM (Kernel-based Virtual Ma-
chine) due to the possibility of using native virtualization, a.k.a. full virtualiza-
tion hypervisor. The host (Domain 0) run Fedora 12. By using personalized Perl
scripts the complete deployment was automated.

We used Devil-Linux for the routers, which is one of the most used GNU/Linux
based routers. It is a simple and clean distribution with wide support for rout-
ing functionalities and does not have graphical user interface thus reducing the

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 117



Fig. 4. Experimental Network

consumption of resources. Its customization capabilities allowed us to create a
special distribution with support of WBEM technologies by writing the required
scripts. Consequently, we were able to provide a complete OSPF network through
Quagga.

We tested some Linux distributions such as OpenSuSe, CentOS, Gentoo and
Debian for the clients, all of them used GNU/Linux Kernel 2.6 and standard
tools (ip, traceroute, tcpdump, mtr, iptraf, etc.).

Several possible scenarios were established, proving the correctness of the
WBEM system implemented. For each one, a series of tests were conducted such
as configuration tests, functional tests, concurrency tests and performance tests.

Ones of the most representative tests to prove the implementation correctness
is described in following lines:

1. After we configured the network with our specific settings, we started the
Quagga daemons in the routers. Then, we used tcpdump (i.e. tcpdump -i
eth1 ip[9] == 89) on them to confirm that OSPF was working properly.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 118



2. We observed that the routers automatically set the routes based on OSPF
algorithm.

3. We started a TCP echo client in the Helix computer and the corresponding
TCP echo server in the Stingray computer. Then we observed the path taken
by the packages using the tcpdump packet analyzer in the routers. The
resulting path was: Helix > Markarian > Blinking > Stingray. On the other
hand, we also confirmed this path by using traceroute command.

4. We used PlWSMan to add a new static route in Markarian router with a
higher priority than the existing ones, in order to use the alternative path:
Helix > Markarian > Dumbbell > Blinking > Stingray. This change in the
configuration was made possible by using the remote GUI and the WBEM
implementations, including the CMPI-Router provider installed in Markar-
ian router. After the modification, we observed that the path taken by the
packages had changed as expected.

5. Finally, we used PlWSMan to remotely turn off the eth2 network interface
from Dumbbell router. Again, this operation was made possible by deploying
the CMPI-Router provider into Dumbbell. Then, OSPF routes automatically
changed after a few seconds. As a result, we observed that the system reacted
as expected. The path returned to its original configuration.

Note 2. The user interface PlWSMan was tested in all the nodes and the routers
deployed in the experimental network as well as in external computer nodes.

A set of tests like the one above helped us to demonstrate the correctness of
our WBEM system implementation.

The results of the tests can be found as part of the source code and the
documentation available in SBLIM and Openwsman projects respectively.

5 Future Work

CIM is a broad standard, whose main objective is to provide a common method
to present the elements of a managed system. One of these elements is the routing
protocol OSPF.

The CMPI-Router provider could be improved by adding the implementa-
tions of CIM OSPF classes not included in this work. Therefore, it would be
necessary to interact with a service that provides OSPF functionalities. A good
choice would be Quagga. Recently, in order to supply all the requirements of
the CIM OSPF classes, a patch to Quagga was developed. This patch provides
a new way to dump routing information, which we can use to fill OSPF classes.
The patch was submitted to Quagga project and approved to be applied.

Another important improvement would be to support the MPLS routing
protocol. However, since Quagga does not provide full MPLS support, it would
not be an improvement for the near future.

Finally, since the technologies used are widely encompassing, there is a vast
amount of possible implementations such as creating new PlWSMan modules,
adding support for more routing protocols and developing power management
providers.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 119



6 Conclusions

Network manageability is essential for the successful operation of a data cen-
ter. The infrastructures of internet data centers continue to expand, totaling
hundreds of thousands of devices, applications and different technologies, which
sometimes are incompatible with each other, reducing or virtually eliminating
interoperability.

During this work, we created a solution providing WBEM capabilities for
remotely managing GNU/Linux routers. With our implementations, a system
administrator would be able to manage routes and network interfaces from a
decired router. Moreover, we created an extensible solution, thereby facilitating
future implementations or expansions from open source community.

Based on our experimental results, we were able to validate our implemen-
tation and verify several features provided by WBEM/CIM. We observed the
great importance of: using standards to manage networks comprised of different
kinds of hardware and software, respecting a common communication language,
using a common way of modeling resources, and stimulating cooperation among
companies.

Finally, we have donated the developed code and the written documentation
to open source projects, the providers to SBLIM and the GUI to Openwsman.
Thus, people around the globe will be able to integrate and use this solution
improving efficiency in network management within their data centers.

References

1. Michael, M.; Moreira, J.E.; Shiloach, D.; Wisniewski, R.W.; “Scale-up x Scale-out: A
Case Study using Nutch/Lucene,” Parallel and Distributed Processing Symposium,
2007. IPDPS 2007. IEEE International, vol., no., pp.1-8, 26-30 March 2007, doi:
10.1109/IPDPS.2007.370631

2. Isard, M. Autopilot: automatic data center management, ACM SIGOPS Operating
Systems Review, Volume 41, Issue 2, April, 2007

3. A. Westerinen and W. Bumpus, “The Continuing Evolution of Distributed Systems
Management,” IEICI Transaction on Information and Systems, vol. E86-D, no. 11,
2003/11/01, pp. 2256-2261

4. J.O. Kephart and D. Chess, “The Vision of Autonomic Computing,” Computer,
vol. 36, no.1, 2003, pp. 41-50

5. Yousif M., “Autonomic Computing, Foreword,” Intel Technology Journal, Special
issue on Autonomic Computing, vol. 10, no. 4, 2006, Retrieved April 2011 from
http://www.intel.com/technology/itj/2006/v10i4/foreword.htm/

6. DMTF. Web-Based Enterprise Management (WBEM) standards, Retrieved January
12, 2009 from http://www.dmtf.org/standards/wbem/

7. Distributed Management Task Force Web page. http://www.dmtf.org/
8. Tewary V. and Milencovic M., “Standards for Autonomic Computing,” Intel Tech-

nology Journal, Special issue on Autonomic Computing, vol. 10, no. 4, 2006, DOI:
10.1535/itj.1004.03.

9. A. Kinzhalin, R. Kohn, D. Lombard, and R. Morin. 2009. Enabling the au-
tonomic data center with a smart bare-metal server platform. In Proceed-
ings of the 6th international conference on Autonomic computing (ICAC

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 120



’09). ACM, New York, NY, USA, 87-96. DOI=10.1145/1555228.1555257
http://doi.acm.org/10.1145/1555228.1555257/

10. A. Nashif and R. Kohn, “Eventing in WS-Management: Implementation details
and a real world demo,” Management Developers Conference, Web site as of April,
2011: http://www.mandevcon.com/2007/schedule.html/

11. The DMTF Technical Committee. CIM concepts. White Paper DSP0110, Dis-
tributed Management Task Force, Inc., 1001 SW 5th Avenue, #1100 Portland, OR
97204, June 2003. Version 0.9.

12. Distributed Management Task Force & WBEM Solutions. CIM Tutorial. Dis-
tributed Management Task Force & WBEM Solutions, 1001 SW 5th Avenue, #1100
Portland, OR 97204, 2003.

13. The DMTF Technical Committee. The Common Information Model. Technical
Note, Distributed Management Task Force, Inc., 1001 SW 5th Avenue, #1100 Port-
land, OR 97204, January 2003.

14. The DMTF Technical Committee. DMTF Standards and Terminology. Techni-
cal Note, Distributed Management Task Force, Inc., 1001 SW 5th Avenue, #1100
Portland, OR 97204, June 2003.

15. Quagga. Quagga documentation. http://www.quagga.net/docs/docs-info.php/
16. Heidi Neumann – LTC Systems Management – IBM. CIM Management Instru-

mentation: Architecture. High Level Design Recommendation, IBM. October 2003.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 121




