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Abstract. The problem of modeling accuracy in target tracking has
been well studied in the past and is specially important when track-
ing maneuvering targets. One of the most simple and elegant ways of
improving an algorithm in this sense is by using Interacting Multiple
Model (IMM). IMM is a method that takes into account more than one
model at the same time. This paper describes how it works and how it
has been incorporated in tracking algorithms in the past, specially in the
Extended Kalman Filter (EKF). We also introduce a novel way of using
it with Particle Filters (PF). The original proposal found here is that
we estimate the whole target state sampling particles from the Optimal
Function.

1 Introduction

Tracking has been proved an important discipline in estimation frame-
work and this can be perceived by the large amount of di�erent algo-
rithms proposed in the literature. Examples of applications where target
tracking is extensively used are air tra�c control, air defense, vehicle lo-
cation, surveillance, autonomous underwater vehicles, road vehicle navi-
gation and positioning in network-based wireless systems among others
[7,15,8,14,6].
Tracking is decomposed in 2 stages, detection and estimation. This paper
focuses on this latter stage. At the same time, estimation of the target's
future position, or in any future value that we may be interested in
estimating, has two stages: predicting of the next target state using only
the past information and updating that prediction using the information
available at the present time. That is why the accuracy and the way we
model the target's dynamics, along with the measurement process, are
so important.
Once the model is written, depending on whether it is a linear and Gaus-
sian model or not, there are basically 3 possible types of �lters: Kalman
�lter for the linear Gaussian situations, Extended Kalman �lter or any
other �lter designed to adapt the linear solutions to non linear situations,
and non linear �lters like Particle Filter, that handle non linearities as
well as non Gaussian noises.
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Despite the fact that the usage of only one model is usually preferred
in order to describe the target's motion, in common situations targets
tend to change the way they move over time, and hence one model is
not enough. In this sense, in order to build a proper and more accurate
description of how the state of the tracked object evolves, a method
called Interacting Multiple Models (IMM) is used. This method basically
introduces more than one model and delivers an average of more than
one �lter ponderated by the likelihood of each model being the actual
one by which the target moves and is measured.
Although this method has been extensively used in linear �lters [14,6,8],
and in non linear �lters [7,17,9,15], here we propose a way to incorporate
that method in Particle Filtering using the Optimal Function. That is
why in section 2 we start by de�ning the classic Particle Filter and the
estimation problem. In section 3, a brief description of IMM and how
it works with Kalman �lter is shown. The Particle Filtering algorithm
using Interacting Multiple Models, IMM-PF is developed and explain in
section 4. In section 5 this developed algorithm is compared to the IMM
- Extended Kalman Filter and �nally in section 6 we present this work's
conclusions.

2 Problem De�nition and Particle Filtering

2.1 Markov Hidden Model and Particle Filtering

Let us consider a discrete Markov Hidden Model where the Markov state
process is x0:k = {x0, ...,xk}. This Markov process is hidden in the sense
that its true value can't be known. The only way to know something
about x is through the observations z0:k = {z0, ..., zk}. This model is
described by an evolution or transition equation and a marginal distri-
bution for the measurements:

p(x0) (1)

p(xk|x0:k−1, z0:k−1) = p(xk|xk−1) (2)

p(zk|x0:k, z0:k−1) = p(zk|xk) (3)

Since we are working in tracking situations, xk will be read as the state of
the target at time k and it will contain the valuable information about
the target (usually position, velocity and acceleration). The target is
assume to evolve and the observation is built according to:

xk = fk(xk−1) + vk (4)

zk = Hkxk + wk (5)

where vk is the process noise and wk the observation noise. All along this
paper, we will assume that the process noise and the observation noise
are mutually independent and distributed according to vk ∼ N (0, Qk)
and wk ∼ N (0, Rk).
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Our aim is to estimate recursively in time any expectation of the form

I(fk) = Ep(x0:k|z0:k) [fk(x0:k)] =

ˆ
fk(x0:k) · p(x0:k|z0:k)dx0:k (6)

particularly the expectation of xk . In order to do so, we �rst need to
know hot to calculate or how to estimate the distribution p(x0:k|z0:k),
the so called the a posteriori function.
Most of the times, it is impossible to calculate the integral (6) and hence
it can be estimated through Monte Carlo sampling, [4]. If we assume that
we can sample N particles out of p(x0:k|z0:k), with i = 1, ..., N , then (6)

is estimated by IN (fk) = 1
N
·
∑N
i=1 fk(x

(i)
0:k). However, this is often as dif-

�cult as it is to calculate (6). Hence, a new function from which to sample
particles is introduced, the so called importance function, π(x0:k|z0:k),
and then (6) can then be written as

I(fk) =

ˆ
fk(x0:k) · p(x0:k|z0:k)

π(x0:k|z0:k)
· π(x0:k|z0:k)dx0:k

=

ˆ
fk(x0:k) · w∗(x0:k) · π(x0:k|z0:k)dx0:k (7)

where w∗(x0:k) = p(x0:k|z0:k)/π(x0:k|z0:k) are called the importance
weights.
This time, if we sample N particles as x

(i)
o:k ∼ π(x0:k|z0:k), the estimation

results in Î∗N (fk) = 1
N
·
∑N
i=1 fk(x

(i)
0:k) · w∗(i)k , where the w

∗(i)
k are is

w
∗(i)
k = w∗(x

(i)
0:k) =

p(x
(i)
0:k|z0:k)

π(x
(i)
0:k|z0:k)

(8)

=
p(x

(i)
0:k, z0:k)

π(x
(i)
0:k|z0:k) · p(z0:k)

(9)

Since p(z0:k) is a normalizing constant di�cult to evaluate, we introduce

the unnormalized importance weights, w
(i)
k = p(z0:k) · w∗(i)k , and an es-

timation of the importance weights, the normalized importance weights

w̃
(i)
k

w̃
(i)
k =

w
(i)
k∑N

j=1 w
(j)
k

(10)

ŵ
∗(i)
k = Nw̃

(i)
k (11)

This way, the posterior distribution and (6) becomes estimated by

ÎN (fk) =

N∑
i=1

fk(x
(i)
0:k) · w̃(i)

k (12)

p̂N (x0:k|z0:k) =
∑N
i=1 w̃

(i)
k · δ

(
x0:k − x

(i)
0:k

)
(13)

Since in real situations it is highly desirable to calculate the estimations
above in a recursive way, at each time k > 1 we would like to sample x

(i)
k

and calculate w
(i)
k only as a function of x

(i)
k−1 and w

(i)
k−1.
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w
(i)
k =

p(z0:k) · p(x(i)
0:k|z0:k)

π(x
(i)
0:k|z0:k)

=
p(x

(i)
0:k−1, z0:k−1) · p(x(i)

k , zk|x(i)
0:k−1, z0:k−1)

π(x
(i)
0:k−1|z0:k) · π(x

(i)
k |z0:k,x

(i)
0:k−1)

=
p(x

(i)
k |x

(i)
0:k−1, z0:k) · p(zk|x(i)

0:k−1, z0:k−1)

π(x
(i)
0:k−1|z0:k) · π(x

(i)
k |z0:k,x

(i)
0:k−1)

. . .

· · · p(x(i)
0:k−1|z0:k−1) · p(z0:k−1) (14)

If the importance function is chosen such that

π(x0:k|z0:k) = π(x0:k−1|z0:k−1) · π(xk|z0:k,x0:k−1) (15)

then (14) yields

w
(i)
k =

p(x
(i)
0:k−1|z0:k−1) · p(z0:k−1) · p(x(i)

k |x
(i)
0:k−1, z0:k)

π(x
(i)
0:k−1|z0:k−1) · π(x

(i)
k |z0:k,x

(i)
0:k−1)

· · ·

· · · · p(zk|x(i)
0:k−1, z0:k−1)

= w
(i)
k−1 ·

p(x
(i)
k |x

(i)
0:k−1, z0:k) · p(zk|x(i)

0:k−1, z0:k−1)

π(x
(i)
k |z0:k,x

(i)
0:k−1)

(16)

Another notable consequence of (15) is that at time k there is no need

to resample the whole trajectory x
(i)
0:k−1 and one can simply sample x

(i)
k

out of π(x
(i)
k |z0:k,x

(i)
0:k−1).

2.2 Degeneracy Problem

It is well known that as time �ows, the variance of the particle weights
starts increasing [4], [1]. This means that almost all of the weights are
going to be nearly zero and hence there is a great cost on updating tra-
jectories which will have no impact on the �nal estimation. The way and
speed at which this variance grow depends on the importance function
we choose. The ideal case would be to use p(x0:k|z0:k) and so we would
get Eπ(x0:k|z0:k)(w

∗(x0:k)) = 1 and varπ(x0:k|z0:k)(w
∗(x0:k)) = 0.

In order to avoid this, or at least to reduce the variance, there are two
di�erent solutions proposed in the literature: resampling and/or using
an importance function which minimizes it.

Resampling The basic idea behind resampling is to discard those
particles with a very low importance weight and then to replace them
with other more important particles in a random way. When to replace
these particles with negligible weights is a key decision and it is usually
decided through a threshold called the e�ective sample size Neff [4]

Neff =
N

1 + varπ(x0:k|z0:k)(w∗(x0:k))
≤ N
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It is obvious that the ideal situation is to have Neff as close to N as
possible. Using the normalized weights, one can approximate Neff by

N̂eff =
1∑N

i=1(w̃
(i)
k )2

(18)

Whenever this estimation decreases bellow the �xed threshold Nthres,
resampling should occur.

There are several random ways to replace this particle trajectories. In
this work we use a resampling method based on the probability that a
sample from a uniform distribution U(0, 1) has of matching the normal-
ized weights. Since the sum of these normalized weights equals to 1, the
value of each weight ŵ

∗(i)
k can be thought of a region that particle has

between 0 and 1. A particle with a higher weight than others will be
represented by a greater region in that line between 0 and 1. Because
of this, a particle with higher ŵ

∗(i)
k has more probability of having that

sample located in its region. After such process, the expected amount of
times a particles was resampled is proportional to its normalized weight.
If ni is the amount of times particle x

(i)
k was resampled at time k and

the samples taking from U(0, 1) are independent , E[ni] = N · ŵ∗(i)k .

Optimal Importance Function The optimal Importance function
is the function that minimizes the variance of the importance weights de-
�ned above, varπ(x0:k|z0:k)(w

∗(x0:k)). Recalling that var[w
(i)
k ] = E[(w

(i)
k )2]−

E[w
(i)
k ]2, it is possible to show that E[w

(i)
k ] = w

(i)
k−1 · p(zk|x

(i)
0:k−1, z0:k−1).

Then, writing E[(w
(i)
k )2] as:

E[(w
(i)
k )2] =

(
w

(i)
k−1

)2

· p(zk|x(i)
0:k−1, z0:k−1)2 · · ·

· · ·
ˆ
p(zk|x(i)

0:k−1, z0:k−1)2

π(x
(i)
k |z0:k,x

(i)
0:k−1)2

π(x
(i)
k |z0:k,x

(i)
0:k−1)dx

(i)
k (19)

it is easy to see that if π(x
(i)
k |z0:k,x

(i)
0:k−1) = p(x

(i)
k |z0:k,x

(i)
0:k−1) the inte-

gral in (19) equals 1 and hence E[(w
(i)
k )2] =

(
w

(i)
k−1

)2

·p(zk|x(i)
0:k−1, z0:k−1)2.

Replacing this and E[w
(i)
k ] in the var[w

(i)
k ], it yields var[w

(i)
k ] = 0, and

therefore the variance is minimized.

According to the above, the optimal importance function is:

π(x
(i)
k |z0:k,x

(i)
0:k−1) = p(x

(i)
k |z0:k,x

(i)
0:k−1) (20)

Replacing (20) in (16), the recursive form of the unnormalized impor-
tance weights becomes

w
(i)
k = w

(i)
k−1 · p(zk|x

(i)
0:k−1, z0:k−1) (21)
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3 Interacting Multiple Models and

IMM-Kalman Filter

3.1 IMM

One of the �rst steps of object tracking is to model the dynamic law
of the target's motion. In real cases, it is certainly impossible to write
a model that �ts for every possible motion type. This is specially true
for maneuvering targets. That is why baring more than one model in
the tracking algorithm as an alternative to common algorithms usually
yields better results. This method is called Interacting Multiple Models,
IMM [2,3,5].
Lets suppose rk = j is the j model that describes the target's motion at
time k, where j can be any of the set {1, 2, ...M} and M is the amount
of possible models. The transition process between models is described
by a Markov process:

p(rk = j|r0:k−1) = p(rk = j|rk−1) (22)

πji , p(rk = j|rk−1 = i) (23)

p(r0) (24)

Originally applied to linear Gaussian tracking, a Kalman Filter is devel-
oped for every model at each time, and then the output is calculated as
a weighted sum of each �lter output:

x̂k ,
M∑
j=1

x̂j,k · p(rk = j|zk) (25)

where x̂j,k is the output of each Kalman Filter written using model
rk = j.
One interesting application of IMM is Track Formation, [2]. This method
aims to decide, based on a threshold, if a couple of measurements inside
a window is considered a valid target for tracking or not. However, Track
Formation is out of this work's scope.

3.2 IMM - Extended Kalman Filter

The aim of this part is to show brie�y how IMM works with Extended
Kalman Filter, which will be used in a later section for comparison with
the IMM Particle Filtering algorithm proposed here.
The key to understand IMM-KF is that there is a separate Kalman
process for each model and that are 3 stages at any given moment k:

1. Updating the likelihood of the models given the past measurements,
p(rk = i|z0:k−1), and the marginalized distribution of xk−1 given the
past measurements and the present model, p(xk−1|rk = i, z0:k−1)

2. Applying a Kalman Filter per model.
3. Updating the distribution of the model given the present measure-

ment, p(rk = i|z0:k).
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Extended Kalman Filter, explained in [16], can be integrated with IMM
in the following way. Lets assume that we know every measurement up to
time k−1 and the past estimations x̂ı̂,k−1 for each EKF, with i = 1, ...,M
whereM is the number of di�erent models. Then the �rst step is to write
the likelihood of the actual model given the past measurements

p(rk = i|z0:k−1) =
∑
j

πijp (rk−1 = j|z0:k−1) (26)

and the estimation of xk−1 given the past measurements and the present
model,

p(xk−1|rk = i, z0:k−1) = N
(
x̄i,k, P̄0,k−1

)
(27)

x̄i,k−1 ,
1

p(rk = i|z0:k−1)

∑
j

πijp (rk−1 = j|z0:k−1) · x̂j,k−1 (28)

P̄i,k−1 ,
1

p(rk = i|z0:k−1)

∑
j

πijp (rk−1 = j|z0:k−1) · · ·

· · ·
[
Pj,k−1 + [x̂j,k−1 − x̄i,k−1] [x̂j,k−1 − x̄i,k−1]T

]
(29)

As stated before, an Extended Kalman Filter is applied per model. The
input to each �lter is the pair

{
x̄i,k−1, P̄i,k−1

}
and the output is the

pair {x̂i,k, Pi,k}. The reason why we do not apply the �lter straight to
x̂j,k−1 is because the distribution of this estimation is marginalized to
the model in the previous instant k − 1, p(xk−1|rk−1 = i, z0:k−1), and
hence we would not know which model to use to make the target evolve
at time k.

Finally, given the estimation of xk from each model, the last step is the
update of the distribution from p(rk = i|z0:k−1) to p(rk = i|z0:k):

p(rk = i|z0:k) = C · p(rk = i|z0:k−1)

det (Bi,k)
1
2

e
− 1

2 (zk−z̃i,k)TB−1
i,k

(zk−z̃i,k) (30)

where Bi,k = HP̃i,kH
T +I, z̃i,k = h (f (x̂i,k−1)) and C is a normalization

constant so that
∑
i p(rk = i|z0:k) = 1.

For output purposes, the �nal estimation of xk and the covariance matrix
Pk at time k are

x̂k =
∑
j

x̂j,kp(rk = j|z0:k) (31)

Pk =
∑
j

p(rk = j|z0:k)
[
Pi,k + [x̂k − x̂j,k] [x̂k − x̂j,k]T

]
(32)

It is easy to see how simple this method is. However, per model that we
add to the tracking, an additional �lter has to be calculated every time
we want an estimation of the process. This implies that as we add new
models, the time it takes to estimate the target position takes more and
more time. We will see in the next section how this is improved when we
use the IMM Particle Filter.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 222



4 IMM Particle Filter

In the last years, IMM has been introduced in Particle Filter algorithms,
[9,10,11,12,17,15,8], and in some variations of it like Variable Rate Parti-
cle Filter (VRPF) [15]. In those papers, there is a rich diversity in which
IMM was used. For instance, [8] uses IMM as it was conceived in [2] and
uses KF, MPF and PF as the estimation �lters. Then the outputs are
ponderated with the likelihood of the model as in (25). In[15] and [17],
the model is thought as part of the particle and a new model is sampled
for each particle trajectory. However. in [15] the particle �lter used is the
bootstrap �lter and in [17] Rao-Blackwellization has been used and only
the model is estimated using Particle Filtering.

In this work, in order to incorporate the multiple models in the algorithm,
our proposal is to have the model as part of the particle. Similar to what
was done in [17], with the exception that we are going to estimate the
whole particle by Particle Filtering and not just the model. Simply put,
we de�ne the new particle y

(i)
k as

x
(i)
k −→ y

(i)
k = {x(i)

k , r
(i)
k }

The estimation problem continues as de�ned in Section 2, but replacing
xk with yk, and hence p(x0:k|z0:k) with p(y0:k|z0:k). The target now is
supposed to evolve according to:

xk = fk,rk (xk−1) + vk,rk (33)

zk = Hk,rkxk + wk,rk (34)

where fk,rk , Hk,rk , vk,rk and wk,rk depend now on the model we are
using at time k.

As in the classic form of IMM, the model is again described by a Markov
process and hence

p(yk|y0:k−1) = p(xk|rk,y0:k−1) · p(rk|y0:k−1)

= p(xk|rk,xk−1) · p(rk|rk−1) (35)

Up to here, we have been able to write a Particle Filter algorithm which
takes into account more than one dynamic and observation model. In
the following section we will compare IMM-PF with PF and IMM-EKF.

5 Simulation and Results

The performance of the IMM-PF is evaluated in the following simulations
and the results are shown in the �gures bellow. Two comparisons are
provided: one comparing PF with IMM-PF and the second comparing
IMM-PF with the IMM-EKF introduced in section 3.
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IMM-PF compared to PF. The aim of the �rst trail of simula-
tions is to compare classic Particle Filter with the IMM Particle Filter
proposed here. Two models are used, a constant velocity model (CV)
and a constant acceleration model (CA). These models can be found in
[13]. The model transition probabilities are πCV CV = 0.9, πCACV = 0.1,
πCACA = 0.8 and πCV CA = 0.2. The time interval is T = 0.5 and the
number of particles used are 200 in each �lter. The measurement noise is a

zero-mean white Gaussian process with covariance matrixRz =

[
10 0
0 10

]
.

The acceleration increment in CA is a white Gaussian random variable
with variance σ2

acel = 400 in both x and y dimensions. As for the white
Gaussian noise added the velocity in the CV model, we are going to
simulate three di�erent values for the variance: σ2

vel 1 = 1 for the �rst
simulation, σ2

vel 2 = 10 for the second and σ2
vel 3 = 100 for the third

and last one. The intention is to show that as the variance of the noise
increases, the e�ect of having 2 models is not distinguishable. A higher
noise in the velocity makes CV equivalent to the CA.
In all the three �gures, the IMM-PF estimation steps on the Ground
Truth path. It is easy to see that only when the variance of the velocity
in the CV model is big enough to disguise the di�erence between CV
and CA, Fig. 1c, the PF estimation matches the IMM-PF and the true
path.

Table 1: RMSE for PF and IMM-PF depending on the CV process noise variance.
σ2
vel2 PF IMM-PF

1 1217.3 14.85

10 592.99 24.2

100 5.43 4.41

IMM-PF compared to IMM-EKF. The following simulations
compare IMM-EKF explained in section 3 with IMM-PF. To achieve
this we propose two di�erent models:

M1: xk = xk−1 + vk

M2: xk = cos(xk−1) · cos(x2
k−1) + 9 + vk

where vk is the same white Gaussian noise for both models, with variance
σ2
v = 0.1. The measurement process is the same for both models, zk =
xk+wk where wk is the measurement white Gaussian noise with variance
σ2
z = 0.3. The algorithm has n = 500 steps and we are going to run
S = 100 simulations three times for di�erent values of particles, N = 50
particles for the �rst one, N = 150 for the second and N = 500 particles
for the last simulation. The probabilities of each model transition are
π1 1 = 0.9, π1 2 = 0.4, π2 1 = 0.1 and π2 2 = 0.6.
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Fig. 1: IMM−PF compared to PF : Fig. (a) Simulation with σ2
vel = 1; Fig.

(b) Simulation with σ2
vel = 10; Fig. (c) Simulation with σ2

vel = 100.
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For comparison purposes we are going to evaluate the empirical standard
deviation for the �ltering estimates x̂n as in [4]:

√
VAR (x̂k) =

1

n

n∑
k=1

(
1

S

S∑
j=1

(
x̂jk − xjk

)2
) 1

2

where xjk is the true state value at time k for simulation j and x̂jk is its
estimation.

Table 2: Root Mean Square Deviation
√
VAR (x̂k)

IMM-EKF IMM-PF

N = 50 0.2577 0.2607

N = 150 0.2579 0.2439

N = 500 0.2569 0.2378

6 Conclusions

In the �rst part of this paper we described the basic algorithms of Parti-
cle Filtering, Extended Kalman Filter and Interacting Multiple Models
Extended Kalman Filter. In the second part we developed and proposed
a new IMM Particle Filter which we also compared with the algorithms
from the �rst part. From these simulations, it is seen that IMM-PF has
less error than both PF and IMM-EKF because, as stated before, it takes
into account every model, unlike PF, and deals with non linearities bet-
ter than EKF. We proposed an IMM-PF algorithm that investigates the
model space in the same way it does for the state space and that uses
the optimal function to sample particles from, without linearizing them.
Future research will also take into account multiple measurements in a
Probabilistic Data Association framework.
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