
Practical Assessment Scheme to Service Selection for
SOC-based Applications⋆

Martı́n Garriga1,3, Andres Flores1,3, Alejandra Cechich1, and Alejandro Zunino2,3

1 GIISCo Research Group, Facultad de Informática, Universidad Nacional del Comahue,
Neuquén, Argentina.[aflores,acechich]@uncoma.edu.ar,

2 ISISTAN Research Institute, UNICEN,
Tandil, Argentina,azunino@isistan.unicen.edu.ar

3 CONICET (National Scientific and Technical Research Council), Argentina

Abstract. Service-Oriented Computing promotes building applications by con-
suming reusable services. However, facing the selection of adequate services for a
specific application still is a major challenge. Even with a reduced set of candidate
services, the assessment effort could be overwhelming. On a previous work we
have presented a novel approach to assist developers on discovery, selection and
integration of services. This paper presents the selection method, which is based
on a comprehensive scheme for services’ interfaces compatibility. The scheme
allows developers to gain knowledge on likely services’ interactions and their
required adaptations to achieve a positive integration. The scheme is also com-
plemented by a framework based on black-box testing to verify compatibility
on the expected behavior of a candidate service. The usefulness of the selection
method is highlighted through a series of case studies.

Keywords: Service oriented Computing, Component-based Software Engineer-
ing, Web Services

1 Introduction

Service-Oriented Computing (SOC) is a paradigm that promotes the development of
distributed applications in heterogeneous environments [8]. Service-oriented applica-
tions are developed by reusing existing third-party components or services that are in-
voked through specialized protocols. Mostly, the software industry has adopted SOC by
using Web Service technologies. A Web Service is a program with a well-defined inter-
face that can be located, published, and invoked by using standard Web protocols [2].
However, a broadly use of the SOC paradigm requires efficient approaches to allow
service consumption from within applications [18]. Currently, developers are required
to manually search for suitable services to then provide the adequate “glue-code” for
assembly into the application under development. This implies a large effort into dis-
covering services, analyzing the suitability of retrieved candidates and identifying the
set of adjustments for the final assembly of a selected candidate service [4].

In order to ease the development of SOC-based applications we have presented in
a previous work [9] an approach which helps at discovery, selection and integration

⋆ This work is supported by projects: ANPCyT–PAE-PICT 2007-02312 and UNCo–IEUCSoft
(04-E072).

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 204

of services. This proposal is based on two recent approaches,each one focused on
different aspects of maintainability. The first approach, calledEasySOC [6], provides
specific semi-automated methods for both discovery and integration of services, for
which a comprehensive review of current methods and techniques was previously car-
ried out – as can be seen in [7, 6, 17]. The second approach, calledTestOOJ [10] was
initially developed to work with off-the-shelf (OTS) software components as a solution
for substitutability of component-based systems. This approach supplies a method for
selection of the most appropriate third-party candidate component. Since web services
involve a special case of software component [20, 3, 15], few initial adjustments were
required to apply this selection method for SOC-based application development.

In addition, the selection method has been extended to provide a comprehensive
scheme for assessing interfaces from candidate services according to requirements of
internal components from a SOC-based application. This scheme allows to characterize
the matchmaking process through a series of syntactic compatibility cases conveying
not only the usual programming standards (e.g. names on operations and parameters),
but mainly differentiating strong and potential similarity cases. Thus the scheme is di-
vided into two main sections: automatic-strong matching and semiautomatic-potential
matching, where the former involves similarity cases directly recognized from candi-
date’s interfaces, while the later involves those cases initially analyzed as a mismatching
that could be solved by a decision of a developer based on a semiautomatic assistance.
The whole package of information achieved from this process provides developers an
important insight on candidate services and the required adaptations for integration.

The assessment scheme is also complemented by a framework based on black-box
testing with the purpose to verify compatibility on the expected behavior of a candidate
service. After a review of the literature, this step consider current techniques from [13,
19, 16] and has been particularly conceptualized based on theobservability testing met-
ric [11, 13] that identifies a component operational behavior by analyzing data transfor-
mations (input/output). This testing metric helps to understand the functional mapping
performed by a component and therefore its behavior. Hence, a potential compatibility
of a candidate service could be exposed – as we analyzed on a previous work [10] and
was also discussed in [1, 5]. In addition, [3] presents a summary of fair techniques to
test SOC-based systems, pointing out their close relation to component-based systems.

The whole approach is fully supported by two semi-automatic tools, namedEasySOC-
Plugin andTestOOJ respectively, which have been conveniently integrated to validate
the ideas proposed in this paper.

The paper is organized as follows. Section 2 presents an overview of the whole pro-
cess for SOC-based application development. Section 3 gives details of the Assessment
Scheme of the Selection Method. Section 4 presents a series of case studies. Conclu-
sions and future work are presented afterwards.

2 Process for SOC-based Application Development

During development of a service-oriented application, a developer may decide to im-
plement specific parts of a system in the form of in-house components. Additionally,
for some of the comprising components the decision could be the acquisition of third-

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 205

party components, which in turn could be solved with the connection to web services.
Figure 1 depicts our proposal intended to assist developers in the process of discovery,
selection and integration of web services. Following are briefly described the steps for
each of the three main phases of the process.

QBE-based

search Engine

Query Generation
(automatic step)

Interfaces Mapping
(semi-automatic step)

Selected

Interface mapping

generate

Service Integration
(semi-automatic step)

IR C

WSDLs

IS

AS

PS
generate

1.1.

3.1.

3.2.

Behavioral

Compatibility

Test
Suite

generate

generate

generate

executeTS

IS

Wrappers

Build Behavioral

Test Suite

2.1. Interfaces

Compatibility

2.2.

2.3.

Service Search
(automatic step)

1.2.

generate

search

query

generate

WSDL

Interfaces

Matching

1st Phase

3rd Phase

2nd Phase

Fig. 1. Process for SOC-based Application Development

1st Phase – Service Discovery.
BeingC a client component that requires certain services to be fulfilled. A specification
for a required service could be described in the form of an interfaceIR and a depen-
dency fromC to IR. Additional annotations as JavaDoc comments could be attached to
them [9].

1.1. Query Generation. Information gathered fromC andIR is processed by apply-
ing text mining techniques to form an initialquery comprised of relevant terms. This
query can also be properly refined and expanded by exploring other internal compo-
nents from the client application and analyzing superclasses from theIR’s hierarchy [6].

1.2. Service Search. The finalquery becomes the input for a search method called
WSQBE that uses a Query-by-Example search engine [7]. An initial step deduces the
most related category to the query (or example functionality), to then look for relevant
services within its registry. The developer may also set a specific category in order to get
a more focused and reduced search. The outcome is a wieldly list of candidate services.
2nd Phase – Service Selection.
Although the list of candidate services is not too large, still a decision must be made
about the most appropriate serviceS (with interfaceIS) for the consumer’s application.
This phase is intended to help not only to identify an adequate candidate service, but
also to certify that its behavior match the requirements of the client application. Each
serviceS is evaluated at a time, by previously deriving a Java version of the WSDL
description of its interfaceIS [9].

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 206

2.1. Build Behavioral TS. A test suite TS is generated with the purpose to rep-
resent behavioral aspects from a third-party service, with required interfaceIR. This
TS complies with certain criteria that help describing different facets of interactions of
componentC with the required service (throughIR). Notice that the goal of this TS is
not to find faults but to represent behavior [10].

2.2. Interface Compatibility. Both the required interfaceIR and the provided inter-
faceIS are syntactically compared. The evaluation is based on a comprehensiveAssess-
ment Scheme to recognize either automatic-strong or semiautomatic-potential match-
ings, from the set of operations ofIR and the operations offered byIS. TheAssessment
Scheme provides the chance to not discard potential candidate services in which opera-
tions do not completely coincide on their names, order of parameters, etc. The outcome
of this step is anInterfaces Matching List where each operation fromIR may have a
correspondence with one or more operations fromIS. Since this step is the main focus
of this paper, details are given in Section 3.

2.3. Behavior Compatibility. ServiceS, which has passed the previous step, must
be evaluated on its behavior. This implies to execute the TS generated fromIR, against
S (throughIS). The purpose is to find the true operation correspondences from theInter-
faces Matching List generated in the previous step, from which a set of wrappers (W)
for S (throughIS) is generated. Another goal is to find a wrapperw ∈ W to be placed
betweenIR andIS to allow the client componentC to safely call serviceS. For this, each
w ∈ W is taken at a time as the target class under test by running the TS fromIR. After
the whole setW has been tested, the percentage of successful tests should be higher
than 70% to have a final conclusive result on compatibility. This also implies that at
least one wrapper can be taken as the most suitable to allow the integration of serviceS
to the client componentC [10].

3rd Phase – Service Integration.
After a candidate serviceS has passed the evaluations from the Selection Phase, the
most adequate wrapperw ∈W can be used to proceed with the integration of serviceS
to the client componentC [9].

3.1. Mapping of Selected Interface. From the most adequate wrapperw ∈ W and
making use of theInterfaces Matching List is generated a specificInterface Mapping
comprised of concrete correspondences between the required interfaceIR and the inter-
faceIS (of the selected web serviceS). The Interface Mapping adopts the form of an
XML file.

3.2. Integration of Selected Service. From theInterface Mapping defined into the
XML file in the previous step, is applied theAdapter design pattern to generate an
adapterAS, where each operation from the required interfaceIR will invoke a specific
operation from the selected interfaceIS. In addition, the physical connection toS for
allowing invoking operations exhibited inIS, is managed through theDependency In-
jection design pattern [14]. Thus, a proxy forS (PS) is generated, from whereC will
end up calling the operations declared inIS throughPS, which transparently invokes
the remote serviceS. Interestingly, this mechanism is not intrusive, since the code of

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 207

C remains untouched still on dependency withIR, from where the adapterAS and the
proxyPS have been generated.

Next sections provide detailed information particularly related to the Interface Com-
patibility step. A case study will be used to illustrate the usefulness of the Assessment
Scheme into the Selection Method.

2.1 Case Study

Let us suppose the development of a communication tool for exchanging instant mes-
sages with contacts from a user’s contact list. We have specified the behavior of the re-
quired service in the form of operations defined into a Java interfaceIR, namedChatIF.
Figure 2(a) shows the required interfaceChatIF, which includes a complex type named
Content. By running the 1st Phase of the process, a web service calledOMS (Online
Messenger Service) has been discovered athttp://www.nims.nl/. Particularly we are in-
terested on serviceOMS2 (http://www.nims.nl/ soap/oms2.wsdl) whose interfaceIS is com-
prised of 38 operations, and the most relevant ones can be seen in Figure 2(b), where an-
other complex type namedMessage is used for enclosing the contents to be exchanged.

<<import>>

(a) Required Interface

<<import>>

(b) Candidate Web Service
Fig. 2. Instant Messenger Application – Chat

3 Interface Compatibility Analysis

The Selection Method, corresponding to the 2nd phase of the whole process for SOC-
based application development, entails handling a certain context information from the
application’s business domain. Such information is vital to understand the functionality

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 208

that will be fulfilled by a third-party service. We assume the availability of the documen-
tation artifacts describing the expected software architecture, including the Requirement
Specification document (as source of knowledge).

As explained in Section 2, the Selection Method concerns two main evaluations on
candidate services, from which a concrete recommendation concerning the most ap-
propriate service is achieved. The final evaluation procedure (Step 2.3) takes the set
of candidate services to be put under test with the purpose to discover a compatibility
with respect to the expected behavior for the client application. Nevertheless, such final
evaluation requires a previous assessment at a syntactic level on Interface Compatibil-
ity (Step 2.2), which may provide a useful preliminary information to help developers
gain knowledge on several aspects. The outcomes may help eluding to early discard a
candidate service upon simple mismatches but also preventing from a serious incom-
patibility. In addition, a helpful information about the adaptation effort of a candidate
service may take shape for a positive integration into the consumer application.

Particularly, the Interface Compatibility analysis is comprised of a practical scheme
that is divided into two parts: automatic matching cases and semi-automatic potential
matchings. Both parts characterize syntactic similarity cases into 4 levels of compati-
bility, to help analyzing operations from the interfaceIS (of a candidate serviceS), with
respect to the required interfaceIR.

Following is presented the first part of the scheme which recognizes automatic
matching cases. Section 3.2 presents the second part of the scheme, intended to be
applied for solving mismatching cases.

3.1 Assessment Scheme: Automatic Matchings
The Assessment Scheme is focused on characterizing operations equivalence from a
required interfaceIR when is compared to an interfaceIS (of a candidate serviceS).
Table 1 presents the first part of the Assessment Scheme, which is divided into four
levels to describe different syntactic constraints for a pair of corresponding operations.
Such syntactic constraints are based on individual conditions for each element com-
prising the operations’ signature of an interface (return, name, parameter, exception).
Table 2 summarizes the set of operation matching conditions, according to the elements
of an operation’s signature.

Those conditions concerning data type equivalence involve the subsumes relation-
ship or subtyping (written<:), which implies adirect subtyping (written<1) in case
of built-in types in the Java language [12]. It is expected that types on operations
from IS have at least as much precision as types onIR. However, there is a special
case with the String type, which is considered as awildcard type since it is gener-
ally used in practice to allocate different kinds of data. A criteria of “no inclusion”
has been defined about conditionsR3 andP4 that are evaluated in this first part of the
scheme as incompatibilities (treated as conditionsR0 andP0 respectively). For exam-
ple, operationsendMessageTo of ChatIF could have a correspondence with operation
OMS2 SendMessageToChat because there is identical return and exceptions with an
equivalent operation name (R1,N2,E1). However, insendMessageTo there is a parameter
of complex type (Content) without a counterpart into the operationOMS2 SendMessage-
ToChat – i.e.P4 that is initially evaluated asP0. In Section 3.2 is shown how this in-
compatibility can be solved.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 209

Level Constraints

� Exact Match Two operations must have identical signatures.
(1 case) (four identical conditions): [R1,N1,P1,E1]

� Near-Exact
Match

Three or two identical conditions. The remaining might be second condi-
tions: (R2/N2/P2/E2). Exceptional cases: three identical conditions with a
remaining third condition (N3/P3/E3).

(13 cases) Example: operationlogout of ChatIF has equivalencenear-exact 2 with
OMS2 Logout of OMS2 by three identical conditions and a substring equiva-
lence for the operation name (“logout”): [R1,N2,P1,E1]

� Soft Match
(26 cases)

Similar to the previous level, but only two identical conditions. Previous
exceptional cases may occur with lower equivalence conditions.

� Near-Soft Match
(14 cases)

There cannot be two identical conditions, i.e. all conditions can be relaxed
simultaneously.

Table 1.Assessment Scheme: Automatic Matchings

SignatureCondition DescriptionElement
R0 Not compatible

Return R1 Equal return type
Type R2 Equivalent return type (subtyping, Strings or Complex types)

R3 Not equivalent complex types or lost precision

Operation
N1 Equal operation name

Name
N2 Equivalent operation name (substring)
N3 Operation name ignored

Parameters

P0 Not compatible
P1 equal amount, type and order for parameters into the list
P2 equal amount and type for parameters into the list

P3
equal amount and type at least equivalent (subtyping, Strings or Complex types) for some
parameters into the list

P4 Not equivalent complex types or lost precision

Exceptions

E0 Not compatible
E1 equal amount and type, and also order for exceptions into the list
E2 equal amount and type for exceptions into the list
E3 if non-empty original’s exception list, then non-empty candidate’s list (no matter the type)

Table 2.Syntactic Operation Matching Conditions for Interface Compatibility

Complex data types imply a special treatment in which the comprising fields must
be equivalent one-to-one with fields from a counterpart complex type. This means, there
must be a correspondence for each field of a complex type from an operationopR ∈ IR –
though extra fields from interfaceIS may be initially left out of any correspondence. For
example, the operationreceiveNextMessage of ChatIF has a complex type as a return
(Content), and operationOMS ReceiveMessage of OMS2 also has a complex type as a
return (Message). Both complex types are equivalent because their fields are equivalent
one-to-one. Therefore, operationreceiveNextMessage has equivalencenear exact 12
with OMS ReceiveMessage, since they coincide on amount, type and order for param-
eters and exceptions (P1,E1) and there is a substring equivalence for their names (N2) –

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 210

common words “receive” and “message”. Finally, from the previous comments there is
an equivalent complex type as a return (R2).

The first part of the Assessment Scheme in Table 1 is finally comprised of 54 cases,
from the combination of individual conditions (classified into the four levels of com-
patibility). In the following section is addressed the possibility to solve certain cases
of mismatch by means of a semi-automatic assistance based on the second part of the
Assessment Scheme for Interface Compatibility.

3.2 Assessment Scheme: Solving Mismatches

In general, when certain mismatch cases are detected for the interfaceIR, a developer
may outline a likely solution with the support of context information from the appli-
cation’s business domain and particularly the Requirement Specification document (as
source of knowledge). We have identified specific cases in which a concrete compat-
ibility can be set up providing a semi-automatic mechanism to ease this procedure.
Thus, a given operationopR ∈ IR can be linked to a specific operationopS ∈ IS (of a
candidate Web serviceS), with which initially there was no correspondence through
the automatic interface assessment. Table 3 presents the second part of the Assessment
Scheme, in which only new cases are described for all but the first level of compatibil-
ity (exact-match). This time, the lowest individual conditions for return and parameters
(R3,P4) are considered likely possibilities to solve mismatch cases.

Level Constraints

� Near-Exact
Match (1 case)

Three identical conditions with the return that may have a no equivalent
complex type or lost precision: [R3,N1,P1,E1]

� Soft Match Two identical conditions, similar to automatic scheme. Either return or pa-
rameter (not both) with a non equivalent complex type or lost precision
(R3/P4).

(13 cases) Example: operationsendMessageTo of ChatIF could match operation
OMS2 SendMessageToChat of OMS2. However, there is a parameter of com-
plex type (Content) on operationsendMessageTo without a match into
the operationOMS2 SendMessageToChat in which all parameters are String
types (initially evaluated asP0). Now they can be re-evaluated considering
that the wildcard type String might contain a chain of all fields from the
complex type (Content) – i.e. an equivalencesoft 25: [R1,N2,P4,E1].

� Near-Soft Match
(40 cases)

Either two identical conditions with the conditionP4 or relaxing all condi-
tions simultaneously.

Table 3.Assessment Scheme: Solving Mismatches

The second part of the Assessment Scheme is comprised of additional 54 cases
therefore making the whole scheme able to recognize 108 cases for Interface Compat-
ibility. In addition, this second part not only is intended to assist on solving mismatch
cases, but also to allow a developer to “force” certain correspondences even when an
automatic match has been previously identified. In this case, a developer may consider
that for a specific operationopR ∈ IR, there is another correspondence that better fit for
the application’s context. Then, the developer is enabled to make such prioritization for

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 211

a particular matching, which then is considered in first orderfor the processing on the
Selection Method’s subsequent step (see Section 2).

The final outcome of the Interface Compatibility step is a matching list character-
izing each correspondence according to the four levels of the Assessment Scheme. For
each operationopR ∈ IR, a list of compatible operations fromIS is shaped. For exam-
ple, let beIR with three operationsopRi, 1≤ i ≤ 3, andIS with five operationsopS j,
1≤ j ≤ 5. After the procedure, the matching list might result as follows:

{ (opR1, {opS1, opS5}), (opR2, {opS2, opS4}), (opR3, {opS3}) }.

The success on the precision achieved during the Interface Compatibility step is
very important to reduce the computation effort for the subsequent step of behavior
evaluation (see Section 2). This is the main reason for the definition of the whole As-
sessment Scheme, in which different design and programming heuristics have been
applied, mostly from a practical experience perspective.

4 Case Studies

In this section is shown in detail the evaluation’s results for the example presented in
Section 2.1. Then another case study is briefly described.

4.1 Instant Messenger – Chat

Figure 3 shows the automatic matching results forChatIF and serviceOMS2, where a
mismatch is identified for operationsendMessageTo of ChatIF (depicted with a red cell)
for which a semi-automatic solution has been set up by asoft 25 match to operation
OMS2 SendMessageToChat of OMS2. The rest of theChatIF interface has found a match –
as shown in Table 4. For example operationcreateUser has anear-exact 2 match to op-
erationOMS CreateUSer (due to the substring equivalence). Operationslogin andlogout
obtained similar result by anear-exact 2 match to alike operations, and fournear-
exact 7 matches to other operations. Finally, operationreceiveNextMessage obtained
a near exact 12 match to operationOMS ReceiveMessage of OMS2 service. Although a
specific correspondence was identified for each operationopr ∈ IR, a conclusive deci-
sion to accept or reject the candidate serviceS must be made through the subsequent
step of behavior compatibility. This step is omitted for brevity reasons, though a similar
procedure can be seen in [9], where the expected compatibility had been found.

4.2 Weather System

This case study is a system in which it is required to provide temperature information on
both celsius and fahrenheiht scales. A required interfaceIR has been defined in the Java
format, namedTemperatureIF, which is shown in Figure 4(a). The candidate web ser-
vice is namedTempConvert4 and its interfaceIS is shown in Figure 4(b). When running
the automatic Interface Matching betweenTemperatureIF and serviceTempConvert, the
results reveal that all operations fromTemperatureIF have found a match – as shown
in Table 5. In this case, both operations fromTemperatureIF obtained similar result by
two soft 32 matches to both operations ofTempConvert service. The String type which
is recognized as a wildcard type allows to have an equivalence on types for return and

4 http://www.w3schools.com/webservices/tempconvert.asmx?WSDL

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 212

Fig. 3. Automatic Interface Compatibility for ChatIF–OMS2

parameters (R2,P3). These results do not give an specific correspondence for each op-
erationopr ∈ IR, so this matching list has been evaluated under the subsequent step of
behavior compatibility for which the corresponding operations where identified – this
step is omitted for brevity reasons.

The case studies above show how a developer may gain specific and valuable knowl-
edge about an application’s context by the support of the Assessment Scheme. For
each likely equivalence case automatically identified, there is a clear rationale that is
also reinforced by the characterization within the four levels of compatibility. In addi-
tion, a developer may analyze different scenarios of compatibility when a low level had
been identified, by setting up other correspondences with the semi-automatic assistance
based on the second part of the scheme. In this way, a certain web service may be saved
from being early discarded as a potential candidate, but also a concrete validation is
given for any change on correspondences, which become very helpful for a developer
to understand the required adaptation effort to achieve the service integration.

5 Conclusions and Future Work

In this paper we have presented details of a Selection Method which allows to evaluate a
candidate web service for its likely integration into a SOC-based application under de-

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 213

ChatIF OMS2

public boolean sendMessage-
To (String x1, String x2, String
x3, Content x4)

[40, soft 25, public boolean
OMS2 SendMessageToChat
(String x1, String x2, String x3,
String x4), R1,N2,P4,E1]

public boolean createUser
(String x1, String x2, String
x3, String x4, String x5, String
x6, String x7, long x8, long
x9, long x10)

[3, n exact2, public boolean
OMS CreateUser (String x1,
String x2, String x3, String x4,
String x5, String x6, String x7,
long x8, long x9, long x10), R1,
N2, P1, E1]

public Content receiveNext-
Message (String x1, String x2)

[13, n exact12, public Message
OMS ReceiveMessage (String
x1, String x2), R2, N2, P1, E1]

public boolean logout (String
x1, String x2)

[3, n exact2, public boolean
OMS2 Logout (String x1, String
x2), R1, N2, P1, E1]

[8, n exact7, public boolean
OMS Login (String x1,
String x2), R1, N3, P1, E1]

[8, n exact7, public boolean
OMS DeleteUser (String x1,
String x2), R1, N3, P1, E1]

public boolean login (String
x1, String x2)

[3, n exact2, public boolean
OMS Login (String x1, String
x2), R1, N2, P1, E1]

[8, n exact7, public boolean
OMS2 Logout (String x1,
String x2), R1, N3, P1, E1]

[8, n exact7, public boolean
OMS DeleteUser (String x1,
String x2), R1, N3, P1, E1]

Table 4.Final Interface Compatibility for ChatIF–OMS2

(a) Required Interface (b) Candidate Web Service

Fig. 4.Weather System

TemperatureIF TempConvertSoap

public double doCentigradeFahren-
heit (double x1)

[47, soft 32, public String
fahrenheitToCelsius (String x1),
R2, N2, P3, E1]

[47, soft 32, public String
celsiusToFahrenheit (String x1),
R2, N2, P3, E1]

public double doFahrenheitCenti-
grade (double x1)

[47, soft 32, public String
fahrenheitToCelsius (String x1),
R2, N2, P3, E1]

[47, soft 32, public String
celsiusToFahrenheit (String x1),
R2, N2, P3, E1]

Table 5. Interface Compatibility for TemperatureIF–TempConvert

velopment. This method is part of a larger process for discovery and integration of ser-
vices, and provides a practical Assessment Scheme for Interface Compatibility where a
synthesis of design and programming heuristics have been added, both to improve pos-
sibilities to identify potential matchings, but also to help developers to gain knowledge
on the application’s context where the candidate service will be inserted. The whole
process of discovery, selection and integration has a fully support to achieve efficiency
and reliability. Our current work is focused on exploring Information Retrieval tech-

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 214

niques to better analyzing concepts from interfaces, which has been initially applied
on the EasySOC approach. Another work is related to the behavior compatibility step,
for which we are developing strategies for test minimization. The goal is to structure a
manageable set of test cases mainly to improve efficiency but also to better understand
services’ behavior and the rationale behind achieved levels of compatibility.

References

1. Alexander, R., Blackburn, M.: Component Assessment Using Specification-Based Analy-
sis and Testing. Tech. Rep. SPC-98095-CMC, Software Productivity Consortium, Herndon,
Virginia, USA (May 1999)

2. Bichler, M., Lin, K.: Service-oriented computing. Computer 39(3), 99–101 (2006)
3. Canfora, G., Di Penta, M.: Testing Services and Service-Centric Systems: Challenges and

Opportunities. IT Professional 8(2), 10–17 (Mar/Apr 2006)
4. Cavallaro, L., Di Nitto, E.: An approach to adapt service requests to actual service interfaces.

In: ACM International Workshop SEAMS’08. Leipzig, Germany (2008)
5. Cechich, A., Piattini, M.: Early detection of COTS component functional suitability. Infor-

mation and Software Technology 49(2), 108–121 (2007)
6. Crasso, M., Mateos, C., Zunino, A., Campo, M.: EasySOC: Making Web Service Outsourc-

ing Easier. Information Sciences (2010)
7. Crasso, M., Zunino, A., Campo, M.: Easy web service discovery: A query-by-example ap-

proach. Science of Computer Programming 71(2), 144–164 (April 2008)
8. Erickson, J., Siau, K.: Web service, service-oriented computing, and service-oriented archi-

tecture: Separating hype from reality. Journal of BD Management 19(3), 42–54 (2008)
9. Flores, A., Cechich, A., Zunino, A., Polo, M.: Testing-Based Selection Method for Integra-

bility on Service-Oriented Applications. In: 5th IEEE ICSEA’10. pp. 373–379. Nice, France
(August 2010)

10. Flores, A., Polo, M.: Testing-based Process for Component Substitutability. Software Test-
ing, Verification and Reliability p. 33 (2010), [early view press]

11. Freedman, R.S.: Testability of Software Components. IEEE Transactions on Software Engi-
neering 17(6), 553–564 (June 1991)

12. Gosling, J., Joy, B., Steele, G., Bracha, G.: JavaT M Language Specification. Sun Mi-
crosystems, Inc, Addison-Wesley, US, 3rd. edn. (2005), http://java.sun.com/docs/books/
jls/third edition/html/j3TOC.html

13. Jaffar-Ur Rehman, M. et.al.: Testing Software Components for Integration: a Survey of Issues
and Techniques. Software Testing, Verification and Reliability 17(2), 95–133 (June 2007)

14. Johnson, R.: J2EE Development Frameworks. Computer 38(1), 107–110 (2005)
15. Kung-Kiu, L., Zheng, W.: Software Component Models. IEEE Transactions on Software

Engineering 33(10), 709–724 (October 2007)
16. Mariani, L., Papagiannakis, S., Pezzè: Compatibility and Regression Testing of COTS-

component-based software. In: IEEE ICSE. pp. 85–95. Minneapolis, USA (May 2007)
17. Mateos, C., Crasso, M., Zunino, A., Campo, M.: Separation of Concerns in Service-Oriented

Applications Based on Pervasive Design Patterns. In: 25th ACM SAC’10 (2010)
18. McCool, R.: Rethinking the Semantic Web. IEEE Internet Computing 9(6), 86–87 (2005)
19. Orso, A. et.al.: Using Component Metadata to Regression Test Component-based Software.

Software Testing, Verification and Reliability 17, 61–94 (May 2006)
20. Stuckenholz, A.: Component Evolution and Versioning State of the Art. ACM SIGSOFT

Software Engineering Notes 30(1), 7–20 (January 2005)
21. Wang, H., Huang, J., Qu, Y., Xie, J.: Web services: problems and future directions. Journal

of Web Semantics 1(3), 309–320 (2004)

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 215

