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Abstract. The use of wireless sensor networks for information discov-
ery and monitoring of continuous physical fields has emerged as a novel
and efficient solution. To this end, a query message is routed through
the network to fetch data from sensor nodes and report it back to a
sink node. As several applications only require a limited subset of the
available data in the network, this query could be ideally routed to fetch
only relevant data. In this way, much energy due to message exchange
among nodes could be saved. In this paper, we consider the application
of computational intelligence on nodes to implement a parallel adaptive
simulated annealing (PASA) mechanism able to direct queries to relevant
nodes. Besides, a reinforcement learning algorithm is proposed to adapt
progressively the query process to the characteristics of the network, lim-
iting the routing space to areas with useful data. Finally, the relevant
data collection mechanism is also discussed to illustrate the complete
process. We show by extensive simulations that the routing cost can be
reduced by approximately 60% over flooding with an error less than 5%.

Keywords: Sensor Networks, Information Discovery, Energy Conserva-
tion, Computational Intelligence, Metaheuristics, Reinforcement Learn-
ing

1 Introduction

Wireless sensor networks (WSNs) consist of spatially distributed autonomous
sensor (source) nodes with limited sensing, data processing, and communication
capabilities. Nodes can sense physical parameters of their local environment
(e.g. temperature, pollution, noise levels, etc) and send this information to a
sink node via multi-hop wireless communication. Energy conservation is a key
issue in the design of WSN applications because sensor nodes are powered by
batteries. Since communication cost in terms of energy is much higher than
computation one (e.g. the transmission of 1KB is equivalent to compute about
3 millons of instructions), it is preferred to implement simple processing tasks
on nodes to reduce the message transmission. A WSN can be viewed as a huge
distributed database system where users can query data [1]. These queries can
be often processed (i.e. completed) by retrieving data from just a limited subset
of nodes. Indeed, a query may not require fetching all data from the network
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but only a few. Examples of these queries can be related to retrieving the num-
ber of nodes sensing values above a specific threshold or in a specific range, or
to finding maximum/minimum values in the network, etc. These cases can be
defined by threshold values which filter the actual relevant data to be reported
back to the sink node. This process can be implemented as a raw data collection
mechanism where all nodes report their sensed values to the sink node where
data is processed in a centralized fashion. Node’s computational intelligence (CI)
is thus limited to disseminating queries and reporting messages from/to the sink
node. This process can be enhanced by means of in-network data processing tech-
niques [2] which aim at reducing the number of message exchange. Nodes can
decide whether to forward a given message by considering the message content
as well as local information available at the node.

Even if information discovery mechanisms in WSNs that make use of in-
network processing have been proposed and widely studied, they are designed for
event detection applications (i.e. is there a specific event in the area? ) [3], [4], [5].
Instead, in this paper we consider the case of discovering relevant information
and monitoring it afterwards in such a way that: i) if monitored nodes later
result in sensing useless data they can be excluded from the query process, and
ii) if unmonitored nodes happen to sense useful data they can be included in the
query process. We are interested in data queries such as what is the maximum

value sensed in the network? , as addressed in [6], [7]. In this context, our work
considers the problem of routing the query to nodes with relevant information.

Since a priori no information is available regarding which nodes contain rele-
vant data, our scheme implements a learning process to assess how much useful
data are present in the network and self-configure to reduce the amount of mes-
sage exchange. If source nodes, based on a distributed algorithm for localization,
send also information about their geographic position to the sink in the response,
a map with the location of relevant information can be obtained. For example,
sensor nodes can be deployed over an oil spill in the ocean in order to determine
the points of maximum oil concentration, and track the spill’s direction of dis-
placement over the time. Our scheme is fully distributed as each node decides
whether to forward a message to its neighbors or not based on local available
information. In this paper, we illustrate the case of discovery and monitoring
max values of the network, which can be implemented by updating a threshold
value inside the query message; however, other metrics can be implemented.

Routing mechanisms in WSNs are highly dependent on both the application
and the network topology [8]. There is no optimal mechanism that fits all cases.
In unstructured networks, where the sink has not knowledge about the target
location (e.g., relevant data), query dissemination can be implemented based on
flooding [4], [5], random walk [9], gossip, or gradients [6], [7]. Our proposal builds
on ideas of the previous mechanisms. Indeed, query forwarding decisions are eval-
uated based on gradient information to assess the relevance of the surrounding
data. If data can be assumed relevant, flooding is encouraged; otherwise, gossip
routing is implemented. This scheme is similar to the well-known simulated an-
nealing (SA) metaheuristic where randomness is used to explore distant areas
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where relevant data can be present. Besides, as it will be explained in following
sections, parallelization is natural when the broadcast nature of wireless trans-
missions is exploited; thus, multiple forks run simultaneously.

The rest of the paper is organized as follows. Section 2 introduces the network
model and node behavior. Descriptions of the proposed query and data collection
mechanisms are given in Section 3. The proposed learning algorithm is detailed
in Section 4. Section 5 describes simulations and main results of the mechanisms.
Finally, Section 6 discusses main conclusions and future work.

2 Network Model

We consider large, flat and unstructured WSNs of uniformly scattered sensor
nodes over a square geographic area. A sink node, located at the center of this
area, periodically injects on-demand query messages that are routed through
the network to fetch relevant data. In flat networks all nodes have the same
functionality. In unstructured networks the sink node has no clue where the
relevant data reside, it uses blind sequential search for querying. Nodes exchange
messages with all neighbor nodes within a fixed circular communication range.

A query message contains an identification number and a threshold value.
This message is initially broadcasted by the sink node to all its neighbors who,
after processing the query, can relay it to their neighbors, and so on. Even if nodes
can receive the same query multiple times, they can at most forward it once.
For this purpose, nodes keep track of the identification numbers of forwarded
queries using local tables to avoid retransmissions. Query messages are always
processed (even if received several times). In the simplest case, the threshold
value in message is only read to determine if the node has relevant data. If
so, the node configures itself to report its data to the sink node. In this case,
the query is routed through the network to select those nodes above (below)
a threshold value. This threshold value can be also updated (i.e., written) by
nodes to implement, maxima (minima) search functions. Each node compares
the read value from the query message to that locally sensed, if the node has a
better value it updates the threshold value on the query message. Note that in
this case, only those nodes that updated this value get configured to report data
to the sink. However, since a node may receive the same query message more
than once, it may happen that even if it first got configured to reply back, it
could later dismiss its response due to receiving a query message with a better
value than its own. From here on, we assume that the query process is used to
find maximum values in the network.

After processing the query, nodes must decide whether to forward or not the
message to its neigbors. Even if a detailed discussion of this decision process is
described in the next section, we introduce its main principles:

• If a node finds out that its data are relevant, it will always relay the query
message. This is due to the fact that more relevant data may be nearby the node.

• If a node concludes that it has useless data, it will randomly decide whether
to relay the message or not.
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Since network data are to be monitored over time, these queries are injected
periodically by the sink node. Thus, each query iteration can result in fetching
data from a different subset of nodes. On the one hand, data sensed by nodes
may change driving the query to areas seen before as irrelevant and/or avoiding
visiting nodes which now have useless information. Routing is data-driven: if
data changes, routing paths may also change. On the other hand, randomness
is introduced to explore areas where irrelevant data are present. As a result,
new areas may be discovered at each query iteration. In general, we assume
that the stochastic behavior of the network data does not change, which can be
considered a valid assumption for several application scenarios.

3 Forwarding Algorithm

Each node must implement a forwarding algorithm that can process received
messages. These messages can be either queries messages from the sink node or
reply ones from source nodes. The former messages must be routed in the down-
stream direction (from sink to sources) while the latter ones, in the usptream
direction (from sources to sink). In the downstream direction, queries should
be routed over areas where relevant data can be found. Since no information
is available a priori, a probabilistic routing based on the SA metaheuristics is
proposed. In the upstream direction, replies should be directed to the sink node.
Since this upstream routing is preceded by the downstream one, some informa-
tion about the network topology can be used to drive replies to sink node. Next,
we discuss the forwarding algorithm for both cases: downstrean and upstream.

3.1 Downstream Forwarding

To route queries through the network, a version of the well-known SA meta-
heuristic is used [10]. SA has the ability to explore beyond those areas where
no relevant data are available. In our case, each node with no useful data can
forward the query message to its neighbors with probability P computed as:

P (∆E,T ) = e
−∆E

T .

where ∆E is the difference between the threshold value and the data sensed by
the node, while T is the temperature parameter of the SA algorithm.

The largest ∆E, the lowest P as it should be less probable to accept relaying
the query if data is completely irrelevant. A large value of T = T0 is initially
used and then decremented linearly. Note that a key issue is how to setup the
initial value T0. A value too large can flood the network with the query, while a
value too small can limit discovering (hidden) relevant data.

Algorithm 1 describes the forwarding of queries in the downstream direction.
Each node can only forward once each query in order to save as much energy as
possible. Therefore, nodes keep updated an id table where recent messages ids

are stored. Nodes that realize that have relevant data (∆E < 0) always broadcast
the query to all its neghbors. Otherwise, nodes decide randomly whether to
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Algorithm 1 Forwarding algorithm: Downstream only

1: id← getId(Msg)
2: ...
3: T ← getTemperature(Msg)
4: thresholdV alue← getThreshold(Msg)
5: ∆E ← thresholdV alue− sensedV alue

6: if idTable[id] == true then {Discard already forwarded queries}
7: delete(Msg)
8: exit()
9: else

10: updateIdTable(id)
11: end if

12: if ∆E ≤ 0 then {Decide forwarding of new queries}
13: Msg ← setV alue(sensedV alue)
14: Msg ← setTemperature(T )
15: send(Msg)
16: else

17: if P = e−∆E/T > rand() then

18: Msg ← setTemperature(T −D) /* D: Decrement value */
19: send(Msg)
20: else

21: delete(Msg)
22: end if

23: end if

forward or not the query based on the SA concept. Since each forwarded query
is broadcasted more than one node can receive the same message. This results in
a natural parallelization of the algorithm as each forwarded query can generate
multiple forks of the same algorithm. Besides, nodes can forward the query
with different values of T , which is known as adatpive cooling. Since we would
like to encourage nodes to explore areas where relevant data can be assumed,
nodes with relevant local data forward the query with the same temperature.
Instead, nodes which assume irrelevant data decrement the T value linearly by a
D parameter. We refer to the resulting algorithm as parallel adaptive simulated
annealing (PASA).

3.2 Upstream Forwarding

During the downstream routing process, each node can learn about its minimum
distance from the sink node (in number of hops). Besides, nodes can self-configure
to reply to the query if they consider their data relevant. Each of these nodes
sends a reply message back to the sink after a period of time related to the hop
level plus a small random time. This message carries the relevant sensed data
and the hop distance of the node. Besides, to identify if a message is addressed
to the sink (reply) or from it (query), a special flag is used to mark messages
as either downstream or upstream ones. Nodes receiving an upstream message
forward the same message only if: i) their hop distance to the sink is smaller
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than that carried on the message, and ii) the message has not yet been received
or forwarded. All forwarded messages are updated with the hop distance of the
node. In this way, nodes always forward a message if they realize that it gets
closer to the sink node.

Algorithm 2 Forwarding algorithm: Downstream and Upstream

1: id← getId(Msg)
2: type← getType(Msg)
3: hops← getHops(Msg)
4: if type == downstream then

5: if hops < minHops then {Update minimum hop distance to sink node}
6: minHops← hops

7: end if

8: Msg ← setHops(minHops + 1)
9: ... (Algorithm 1 - Downstream forwarding) ...

10: if ∆E ≤ 0 then {Update reply status}
11: replyQuery ← true

12: else

13: replyQuery ← false

14: end if

15: else

16: if idTable[id] == true then {Discard already received replies}
17: delete(Msg)
18: exit()
19: else

20: updateIdTable(id)
21: end if

22: if hops > minHops then {Decide forwarding of new replies}
23: Msg ← setHops(minHops− 1)
24: send(Msg)
25: else

26: delete(Msg)
27: end if

28: end if

The complete forwarding algorithm is summarized in Algorithm 2. Figure 1
illustrates the different behaviors a node can have for the downstream case. In
Figure 1(a) the case where relevant data are available at the node is shown.
Since we consider the case of computing the maximum value, the query message
is updated with the node’s value and broadcasted to its neighbors. Note that
the value of T remains unchanged as relevant data were found. On Figure 1(b)
and 1(c) the case where no relevant data are available is illustrated. In both
cases, the node compares the probability P with a random number to determine
whether to forward the query. In Figure 1(b) the query is relayed and, as a
result, the value of T decremented; while in Figure 1(c) the query is discarded.
Note that nodes self-configure to reply back the query only when they recognize
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themselves as having relevant data as shown in Figure 1(a). For this purpose,
a timer is used to leave some time to the node to eventually process updated
queries that can disabled its response.

Fig. 1. Downstream query routing examples, (a) relevant, and (b), (c) irrelevant data.

4 Learning Algorithm

For a large value of T0 our downstream mechanism can behave as flooding, as
every node would always forward the query despite the data relevance; thus,
there is certainty in always finding the most relevant data. At low T0 values, it
is equivalent to the gradient descent algorithm as the message is forwarded only
through nodes which show some relevant data. As a result, the probability of find-
ing the most significant data is low. Therefore, it is neccessary for our algorithm
to find an optimal T0 value to initialize T so that when linearly decremented
(over bad moves) it offers a good trade-off between routing cost and query error.
For this purpose, a reinforcement learning (RL) algorithm is implemented in the
sink node. RL is a biologically inspired algorithm that acquires its knowledge by
exploring its environment. It is easy to implement, highly flexible to topology
changes, and well suited for distributed problems such as routing [11]. The main
idea behind this algorithm is that the sink can learn about the distribution of
information in the network based on its query experience. It is a simple strategy
to improve the search for relevant information in large WSNs when the sink
has no knowledge of the data distribution. By changing the initial T0 value, the
sink node can limit the search depth of each query iteration, reducing energy
consumption. This process is sketched in Figure 2(a).

Even if nodes are scattered over an area A as illustrated in Figure 2(b), a
first query iteration reaches nodes on area B. Nodes on (A-B) area where not

40JAIIO - ASAI 2011 - ISSN: 1850-2784 - Página 162



8 Guillermo G. Riva, and Jorge M. Finochietto

queried since relevant data was not found nearby and the value of P became too
small. On the second iteration, the initial T0 value is decreased, which reduces
the search space to area C. This process is repeated till the algorithm finds out
the value of T0 that is able to query all nodes with relevant data at the lowest
cost, which in Figure 2(b) is represented by area E. At each query iteration, a
decision on whether to decrease the initial T0 value or not is made by the sink.
After sending the query for the first time (with a high value of T0), the sink
records the number of node responses (i.e., the number of nodes which reported
relevant data). As long as the sink gets data from the same nodes, we can assume
that the initial T0 value can be reduced. On succesive queries, the sink decreases
the injected T0 value while it gets the same number of responses. If this number
decreases, the T0 value is increased. A logarithm decrease-linear increase scheme
is used to adapt the initial T0 value. After a few iterations, T0 converges to a
fixed value which is used in succesive queries. Since both the network topology
and data may change in time, this learning process is run periodically to adapt
to network variations.

(a) (b)

Fig. 2. (a) T0 value at each iteration. (b) Search space reduction at each iteration.

5 Simulation Results

In order to evaluate the proposed routing scheme two metrics were considered:
query error and cost. A realistic network simulator based on the discrete event
simulation package Omnet++ [12] was developed for this purpose.

The first represents the gap between the best reported data to the sink after
a query and the actual optimal one. The latter considers the number of times
on average each node forwarded the query. Note that the maximum query cost
is equal to 1, which means that all nodes relayed the query once (i.e., similar
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to flooding). These metrics were evaluated as a function of network size, node
density, and initial T0 value. Nodes are uniformly deployed over a square surface
obtaining their readings as a function of their positions. This surface is given by
the sum of 160 decreasing exponential functions with different values of position,
amplitude, and decrement. For illustrative pruposes, an example of the resulting
surface is shown in Figure 2(a). Reported results are the average of 1000 random
simulations. A circular communication range of 40 meters is assumed for nodes.
A detailed description about the number of neighbors needed to ensure good
connectivity in multi-hop wireless networks is given in [13].

5.1 Performance

The performance of our mechanism as a function of network size is shown on Fig-
ures 3(a) and 3(b). A node density of 2.5x10−3 nodes/square meters is assumed.
Different initial values of T0 are considered to illustrate its impact; thus, in this
case the sink does not implement the learning algorithm discussed in Section 4.
Note that large T0 values (T0 ≥ 10) result in always retrieving all relevant data
(i.e., query error ≈ 0 as it can be appreciated from Figure 3(a). However, these
values encourage almost all nodes to forward the query message, which is similar
to simply flooding the network. On the contrary, too small T0 values (T0 ≤ 0.1)
result in significant query errors proportional to the network size. Therefore, it
can be seen that there exist a trade-off between errors and cost where a range of
T0 values can offer good performance. For these values, errors can be bounded
to less than 1%, while the query cost tends to decrease for larger networks.

Besides network size, node density impacts on the performance of our scheme
as shown in Figures 3(c) and 3(d). Denser networks tend to decrease the error
gap, requiring smaller initial T0 values. This can be seen in in Figure 3(c) where
for T0 = 0.1 the query error diminishes as the node density increases. Increasing
node density does not impact much on the query cost. Indeed, as shown in
Figure 3(d), this cost has an asymptotic behavior, which means that larger
densities result in slow increments of the query cost.

5.2 Adaptation

As discussed in Section 4, the sink can implement a simple reinforcement learning
algorithm to find out initial T0 values that can offer good performance. Figure 4
shows how this algorithm is able to setup initial T0 values that result in both
low error and cost.

The first query is sent with a pre-configured T0 value, typically high enough
to flood the network. On the second query message, this value is decreased which
reduces the query cost while still offering a low error. After repeating this process
in succesive queries, the error increases, which triggers the slowly (i.e., linear)
increase of T0. Recall that the sink cannot be aware of the error cost, which we
show in Figure 4(a), but only of changes on the number of nodes that reply the
query back. After a few iterations, the initial value of T0 converges to a small
value. Note that the query cost can be decreased to about 50% with respect to
flooding (see Figure 4(b)) while still keeping the error bounded to less than 5%.
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Fig. 3. Query error and cost in terms of network size (a),(b), and node density (c),(d).
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Fig. 4. Adaptation process: (a) Query error and (b) number of transmitted messages
in query dissemination in terms of query iteration and network size.

5.3 Comparison

A comparison of the proposed mechanism respect to flooding and random walk
is shown in Figures 5(a) and 5(b). In the case of random walk, we consider a
maximal hop count value equal to the number of nodes. A query cost reduction
of 60% with an error less than 5% can be obtained by using PASA respect to
the other mechanism.
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Fig. 5. Query (a) error and (b) cost for different routing mechanisms

5.4 Robustness

Finally, the robustness of the scheme is evaluated considering three possible sce-
narios. The first one takes into account variations on the surface that represents
the continuous field to monitor. For this purpose, after the adaptation process, at
each new query iteration we randomly change each of the 160 building functions
up to a maximum value of 10%, 50% or 90%. Figure 6(a) shows that resulting
query error increments as the network size increases. However, the error can be
kept bounded to less than 5-10%. The second one considers node failures after
adaptation process. Nodes are selected uniformly to fail with different percent-
ages of failures (between 0 and 10%), obtaining errors less than 10% in networks
with 5% of failed nodes. This is shown in Figure 6(b). The third one takes into
account the packet loss probability in the network. We show in Figure 6(c) the
performance with packet loss probability between 1% and 10%. All the figures
were generated with 1000 random simulations. We conclude that this mechanism
is robust as it can tolerate data changes, node failures, and packet loss.
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Fig. 6. Query error in terms of (a) amplitude change after adaptation, (b) percentage
of failed nodes, and (c) packet loss probability.
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6 Conclusion

In this paper, we proposed PASA, an energy-efficient probabilistic mechanism for
routing queries in WSNs where only some nodes have relevant data. We showed
how simple algorithms can be implemented distributely to forward both up-
stream and downstream messages. The scheme significantly outperforms flooding-
based and random walk-based models in terms of energy cost. Energy consump-
tion due to message exchange can be reduced by more than 60% as compared
to flooding. Energy savings can be made higher at the cost of increasing the
query error. Future work considers the implementation of proofs-of-concept of
this routing mechanism in real sensor networks.
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