Towards Secure Scripting Development

Facundo Ferrer Andres More
facundo.ferrer@intel.com andres.more@intel.com

Argentina Software Development Center (Intel)

Abstract

This work reflects two separate efforts towards implementing security
awareness in projects being developed using scripting languages. The
same development process was used in both projects which included a
specific focus on security. Besides summarizing lessons learned, this work
recommends automatic tools for static code analysis to ensure that usual
pitfalls are avoided from the very beginning. This work contributes with
an overview of specific insights on Perl and Python security, together with
a list of publicily available support tools, and how they are best applied
and integrated into the development process. The proposed development
framework is based on a supporting infrastructure which minimizes effort
on peer reviews and allows early identification of security issues, making
their resolution easier and cheaper.

1 Introduction

This works shows the experience on how scripting development can be done with
a security focus. Besides best known methods on secure development, specifics
about the Perl and Python programming languages are discussed in detail.

1.1 Background

Among the different programming languages being used around the world,
scripting languages account for a significant portion. As of today, Python holds
the 6th and Perl the 9th position on the ranking of the most popular languages
according to TIOBE. See figure [I] for the April 2011 TIOBE index.

40JAIIO - WSegl 2011 - ISBN: 978-987-1312-22-1 - Pégina 42

April ’11 | April ’10 | Delta | Language Rating
1 2 0 Java 19.043%
2 1 i) C 16.162%
3 3 = C++ 9.225%
4 6 ™ C# 7.185%
5 4 i} PHP 6.584%
6 7 t Python 4.931%
7 5 W Visual Basic | 4.682%
8 11 M Objective-C | 4.386%
9 8) Perl 1.991%
10 10 = Javascript 1.512%

Figure 1: TIOBE Index of Programming Languages (April 2011)

Scripting languages are popular because their use does not requires of a
compiler or any complex toolchain, as they are interpreted on-the-fly at runtime.
In the case of major GNU/Linux distributions, the basic script runtimes are
available by default with their base installation.

Scripting languages are multiple purpose. Besides to have a low learning
curve and to be easily found, they glue different system services and applica-
tions, taking advantage of the UNIX philosophy of providing independent tools
and filters. Scripts are wonderful tools to do task sketching, allowing early
identification of next steps by using a throw-away prototype.

Moreover, as scripts can be seen as a set of commands in a text file, it is
easy to learn from the examples available on the system. Almost by definition,
scripts files are readable by the user executing them. People find useful the idea
of automating their iterative tasks in a way similar to what is done manually
on the command line console.

1.2 Problem Definition

Scripting programming languages such as Perl and Python are mostly used at
system level to coordinate services and even to implement administrative tools
such as packaging systems. They are also the preferred choice to implement
tasks to be done during system startup and shutdown. These tasks require the
enforcement of privileges as their action will impact on the operating system
behavior; affecting any application, service or data.

When running with privileges at system level, any wrong input or unhandled
scenario may drastically impact the system. For instance, any malicious input
may be executed as a system command with administrative rights.

1.3 Related Work

Secure coding in scripting languages has been considered worldwide by different
people [2] [3] HE]. The development of supporting tools [B] and even the inclusion
of new security features on the scripting languages is also work in progress [6]
.

40JAIIO - WSegl 2011 - ISBN: 978-987-1312-22-1 - Pégina 43

2 Secured Software Development Process

2.1 Security Oriented Activities

Before entering into the specific details for scripting languages, there are several
considerations which apply to the stages of the development process itself. These
considerations follow the Security Development Lifecycle, which was developed
at Microsoft to save costs and resources during development [8]. This process
specifies security concepts including the usage of checklists, tools to double check
security threats, security oriented peer reviews and specialized testing.

Development Stage | Security Activity

Definition Training
Architecture Design Patterns
Design Design Reviews

Early Implementation | Automated Support
Final Implementation | Peer Reviews
Testing Specialized Testing

Figure 2: Security Oriented Activities

An overview of the security related activities per process stage is shown
at figure Although similar to the usual development activities for quality
assurance, the list considers specific security oriented topics. During project
definition, the development team as a whole needs to review security topics
including Writing Security Requirements, Secure Architecture, Secure Design,
Secure Coding and Testing Security. Investing some hours on informal discus-
sions around the security features and pitfalls of the technology to be used for
development will save a lot of headaches later on.

Once hands-on development has started, Architecture and Design should
consider the usage of secure design patterns [9], having explicit reviews with fo-
cus on security aspects such as authentication and authorization. While starting
the coding phase, the team needs to put enfasis on the establishment of auto-
mated support to track product changes, and before concluding implementation
a detailed review of critical sections of the codebase needs to be completed.

In the case of iterative development, we can clasify the security activities
according to their occurence as shown in figure

Basis Security Activity

Once Training, Automated Support
Every Iteration | Gap Analysis, Peer Review, Testing
As Required Architecture and Design Reviews
Major Release | Penetration Testing

Figure 3: Security Oriented Activities with Iterative Development

40JAIIO - WSegl 2011 - ISBN: 978-987-1312-22-1 - Pégina 44

2.2 General Considerations
2.2.1 Best Known Methods

During every phase of a development process, security checklist needs to be
available and completed. Once in firefighting mode, it is inevitable that the
urgency will trump importance. Keeping a hardcopy of the activities and their
expected deliverables is a valuable asset for the team.

In the case of security, it is really important to keep focus and a critical
mindset during the end-to-end product development. Checkpoints should be
established to review development milestones with recognized security experts
when available. The key milestones to consider are usually the completion of
each stage: definition, architecture, design, coding and testing.

Design reviews with focus in security are other important discipline to follow.
Each time complex features or bug fixes are faced, consideration must be taken
to check if they might deserve security reviews. In particular this should be
done every time the design is modified; with special emphasis if the design is
being done for the first time.

Code peer-reviews with focus in security should also be done by all the de-
velopment team, including the testing and quality assurance members. Critical
sections handling authorization or privileges should be carefully reviewed every
time they are updated.

If the product execution handles significant parsing of data, enforcing au-
tomated fuzzy testing of malformed data should be mandatory; bugs on input
validation came from the abuse of regular expression features. Fuzzy testing al-
lows the team to exercise error handling and input validation by using randomly
generated information.

All sources of the project deliverables should be kept over version control in
order to avoid loosing effort due to human mistakes and to be able to reproduce
a reported issue with an old version of the code.

2.2.2 Static Analysis

From the efficiency point of view, the development team should remove low
priority issues in the code as soon as possible. Wrong indentation, spellchecking
and other cosmetic findings should be automatically detected and fixed early
during development, not during peer review or testing. In this way, the effort
required to solve them is substantially lower and hence frees up effort for other
tasks and activities adding more value to the product being developed.

To enforce automatic analysis of code, static analyzers should be used. An
ideal static analyzer tool shall have the following characteristics:

1. configurable: the execution of rules shall be configurable; allowing the
user to decide which ones will be enforced.

40JAIIO - WSegl 2011 - ISBN: 978-987-1312-22-1 - Pégina 45

2. severity levels: the rules should be split into different levels and the
levels should be selectable at runtime; allowing to easily categorize and
prioritize the findings when applying the tool for first time.

3. extensibility: the rules should be easily extended; allowing the team to
include new ones when analyzing the outcome of peer reviews to identify
usual issues to avoid in the future.

4. deterministic heuristics: if the tool applies heuristics to determine an
improvement opportunity, it must not show different results over the same
set of files.

3 Perl

3.1 Security Overview

Perl was developed by Larry Wall [10] as a general-purpose scripting language
mostly targeting the processing of text. It is used mostly at system level. The
overall syntax derives from the C language which allowed significant popularity.

Regarding security at Perl, the basic starting point is the perlsec manual
page. The discussion there defines vulnerability contact information and ana-
lyzes main mechanisms and concerns to keep in mind during development.

Perl provides a built-in mode to reduce security threats due malicious input.
This taint mode enables an enforcement of input validation and issues a warn-
ing at runtime unless the data is sanitized with a regular expression or one of
several built-in functions. All input which comes from the user is required to
be untainted explicitly.

The enforcement approach is conservative, if any expression contains tainted
data, then any sub-expression is hence considered tainted as well. Noteworthy,
any operation on strings that uses localization information is considered tainted,
as it is possible for a localization definition to be untrustworthy.

As the scripts will use the inherited environment, it is usually recommended
to include proper cleaning and checking of the PATH and LD_LIBRARY PATH en-
vironments as part of the initial setup. Otherwise, a malicious definition might
led to unwanted results when adquiring privileges during execution.

When using setuid to automate system administration tasks requiring priv-
ileges, it is adviced to drop privileges when they are not longer required, and
even to reject such grant when the task will not use those rights.

3.2 Supporting Tools

As in many other languages, coding style is a small but important code property.
It allows the peer reviews to go smoothly, only focusing on functional things.
The perltidy El tool provides a non error-prone approach to solve the issue.

s a Perl script indenter and reformatter, available at http://perltidy.sourceforge.net.

40JAIIO - WSegl 2011 - ISBN: 978-987-1312-22-1 - Pégina 46

Moreover, the perlcritic El tool attempts to identify awkward, hard to read,
error-prone, or unconventional constructs in the code. Most of the rules enforced
follow the Perl Best Practices book [II]. Thus, clearly documented diagnostics,
rationale, examples and resolution steps are provided on each finding.

The perleritic tool enforces more than 150 complex rules, each of those be-
longing to different themes such as: bugs, complexity, core, cosmetic, mainte-
nance, pbp, performance, portability, readability, security, tests and unicode.

Both tools are extensible, provides documentation and diagnostic informa-
tion on findings, and are designed to be extensible. They have Open Source
licensing so they functionality can be reviewed under the hood.

A simple example of perlcritic’s output is the following:

> perlcritic --brutal --verbose 10 FILE
Return value of flagged function ignored - print at line 681, 5.
InputOutput: :RequireCheckedSyscalls (Severity: 1)
This performs as InputOutput::RequireCheckedOpen/Close
except that this is configurable to apply to any function,
whether core or user-defined.
If your module uses Fatal, Fatal::Exception, or the autodie
manpage then any functions wrapped by those modules will not
trigger this policy. For example:
use Fatal qw(open);
open my $fh, $filename; # no violation
close $fh; # yes violation
use autodie;
open $filehandle, $mode, $filename; # no violation
Currently, autodie is not properly treated as a pragma; its
lexical effects aren’t taken into account.

4 Python

4.1 Security Overview

Python was created by Guido van Rossum [12] as a high-level general-purpose
programming language with the inclusion of high-level data types. This pro-
gramming language has a wide range of uses: it is used for teaching computer
science, as a domain-specific language, and for developing large applications.
Part of its popularity stems from the fact that Python is an interpreted lan-
guage with its own virtual machine [I7].

Something that all Python users have in common is the belief that the code
they are executing in the Python interpreter is not malicious. However, the
current version of Python lacks any mechanism to enforce a security policy
related to controlling access to resources. While some informal methods exist,

2Is a command-line interface to critique Perl source and identify opportunities of improve-
ments, available at http://www.perlcritic.org.

40JAIIO - WSegl 2011 - ISBN: 978-987-1312-22-1 - Pégina 47

Python lacks any mechanism built into the language or its implementation to
prevent code from accessing resources such as files or sockets [17].

The Python developer team implemented a restricted mode similar to Perl’s
tainted mode through the rezec and Bastion modules but starting in version
2.3 of Python, both modules were disabled[I7]. Some years after, Python Secu-
rity started as an individual Open Web Application Security Project (OWASP)
initiative with the mission of making Python the most secure programming lan-
guage in the world [I4]. This is a good starting point of Python security related
topics.

Python does not come with built-in support for input validation but there are
some efforts to implement taint mode in Python [6] [7]. The approach described
by Kozlov et al. [6] implies the modification of the Python interpreter, while
the Conti et al’s s approach [7] describe a library based taint mode.

According to OWASP research, the most efficient way of finding security
vulnerabilities is manual code review. As this activity is very time-consuming,
requires high expert skill, and is prone to overlooked errors, the security com-
munity is actively developing automated approaches to finding security vulner-
abilities [G].

There are two approaches to automatic security analysis, dynamic and static
analysis. The dynamic analysis is the process of extracting program’s properties
by executing and monitoring it under different input data.

On the other hand, static analysis is the process of extracting program’s
properties from the source code solely, without executing it. For the first ap-
proach, the implementation of a Taint mode as described earlier is a good way
to reduce the risks associated with input data. For static analysis, there are
some tools that could give a good help during the development process.

4.2 Supporting Tools

pylint is a tool developed at Logilab.org [I8] to perform static code analysis. It
has a very complete set of tests and allow custom test development. The tests
are shown under different categories, including refactor, convention, warning, or
error.

The following example shows pylint in action, identifying comments, warn-
ings and errors.

> pylint FILE

C:081: Line too long (85/80)

W:567: No exception type(s) specified

E: 86: myexit: Undefined variable ’mylib’

Your code has been rated at 4.25/10

40JAIIO - WSegl 2011 - ISBN: 978-987-1312-22-1 - Pégina 48

5 Supporting Infrastructure

An automated and unattended check used as an early feedback system allows
easy and cheap resolution of issues. The supporting infrastructure should ap-
ply automated acceptance tools including security checks every time the main
development trunk is modified. Ideally they should include the same regression
tests or unit tests being used during coding and testing will also help to reduce
the issues detected during the review stages.

In the case of legacy code, a convergent approach migth be the best fit.
Before entering peer reviews or testing phases, the number of findings need to
be reduced and no critical or high exposure issues should be reported.

A pseudo-code version of the continuous integration script to be used during
development or as testing acceptance criteria is the following;:

process files if they match the expected suffix
FILES=src/*.{pl,pm,py}

check if indentation is 0K
foreach file in FILES; do

indent file > tmp && diff orig new && echo COSMETIC-FAIL
done

run unit test cases
make unit-test && echo UNITTEST-FAIL

run regressions tests
make regression && echo REGRESSION-FAIL

gather previous quality level
svn -r PREV FILES > /dev/null;
OLD=‘static-check FILES | wc -1°¢;
svn up > /dev/null
NEW=‘static-check FILES | wc -1°¢;

only pass if quality has improved
if (NEW > OLD) then echo QUALITY-FAIL;
echo 0K;

This script can be used by both developers and testers besides to be enforced
automatically after each code change. The historical execution figures on exe-
cution time and finding count can be reviewed periodically to easily understand
current gaps and guide next steps in bug fixing.

In our experience this approach allows project development to be streamlined
after applying this type of solution, as peer reviews are done faster, reporting
minor comments. Also, quality findings are decreased continuously if automated
measuring tools are incorporated. Figure [] shows the historical data in one
internal project.

40JAIIO - WSegl 2011 - ISBN: 978-987-1312-22-1 - Pégina 49

T T T
0A Findings per SLOC

8.3 i

8.2 - -

9.1 L 1 1 L 1 1 L 1 1 L
89/81/89 11/01/09 81/81/10 83/81/10 65/01/18 87/81/10 89/81/10 11/01/18 01/81/11 03/81/11 05/01/11 87/81/1:

Figure 4: Total Static Analysis Findings

The whole set of regression tests being executed together with the static
analyzer provides an important indicator of the project status over time, see
Figure It can be also seen how the execution time is increased due the
constant addition of checks after each development iteration, time when the
team identify common pitfalls after code reviews are completed.

40JAIIO - WSegl 2011 - ISBN: 978-987-1312-22-1 - Pégina 50

100 - - - - ——— -

75] T e "

&0 -

% Successful

251 =

an)

EICI
]
]

Diuration
B @
3 3

ba
3

2002 2009 2010 2011

Figure 5: Successful Ratio and Duration of Automated Tests

6 Conclusions

This work shows how to avoid common security pitfalls when developing system-
level scripts. The discoveris are done early in the development process and
without pain thanks to the application of predefined processes and automated
tools.

By following a documented development process with focus in security, the
likelihood of issues ocurrence will be highly reduced regardless deadlines and
required overwork due changed requirements or deadlines.

An ideal approach is to make sure that specific training in security is sched-
uled and taken by the whole product development team, not only on the develop-
ment but also the testing side. Another ideal requirement is to have automated
support to identify coding issues early.

Automated support must be enforced, since one automated test is far more
useful than ten manual tests as it can be used during the whole development
cycle, catching issues earlier and making them cheaper to be fixed. This tech-
nique automated tests can easily include no-brainers on spellchecking, style and
best-known-methods that otherwise are too painful to resolve during a quality
gate at a later stage.

Static analysis is also a practical and efficient approach, as it will let the
team to have less discussions on low priority findings (such as cosmetics ones)
and save effort to focus on relevant issues.

10

40JAIIO - WSegl 2011 - ISBN: 978-987-1312-22-1 - Péagina 51

This work also shows how to automate product builds by enforcing the checks
on every product change. With this approach, the product only suffers con-
trolled changes and the product health is constantly monitored.

7 Further Work

A security analysis with focus on productivity may be done on other scripting
languages. Shell scripting is an interesting candidate to start with, due its
pervasive presence at system level.

Besides the tools previously discussed there are more static analysis tools
available such as RATS from HP-Fortify [19]. Also, most of these tools are
easily expanded through plug-ins and including new types of check rules is a
potential next step once the product development team is familiar with the tool.

8 Acknowledgments

The authors would like to recognize the Argentina Distributed Computing So-
lutions team working at Intel Software Argentina for their contributions and
reviews. Many of the ideas also came from the Argentina Security Development
Lifecycle Forum gathering security representatives (and enthusiasts) from the
different projects on the site.

References

[1] TIOBE Software. TIOBE Programming Community Index. Retrieved April
2011. http://www.tiobe.com/index.php/tiobe_index.

[2] Okubo. Takao, Tanaka. Hidehiko, Secure Software Development through
Coding Conventions and Frameworks, IEEE, 2007.

[3] K. Mazurak, S. Zdancewic, ABASH: finding bugs in bash scripts, Univeristy
of Pennsylvania, 2007.

[4] P Fenwick, J. Richardson, Perl Security, Perl Training Australia, 2008.
[5] Static Detection of Security Vulnerabilities in Scripting Languages. USENIX

[6] Kozlov D., Petukhov A., Implementation of the Tainted Mode approach to
find security vulnerabilities in Python. Moscow State University, 2006.

[7] Juan Jose Conti, Alejandro Russo, A Taint Mode for Python via a Library.
Universidad Tecnologica Nacional, Facultad Regional Santa Fe, Argentina.
Chalmers University of Technology, Sweden.

[8] Michael Howard and Steve Lipner, The Security Development Lifecycle:
SDL: A Process for Developing Demonstrably More Secure Software, Mi-
crosoft Press, ISBN: 0735622140, June 2006.

[9] Nobukazu Yoshioka, Hironori Washizaki, and Katsuhisa Maruyama, A sur-
vey on security patterns, Ritsumeikan University, 2005.

11

40JAIIO - WSegl 2011 - ISBN: 978-987-1312-22-1 - Pégina 52

[10] Wall, Larry, Tom Christiansen and Jon Orwant (July 2000). Programming
Perl, Third Edition. O’Reilly Media. ISBN 0-596-00027-8.

[11] Damian Conway. Perl Best Practices. O’Reilly Media (July 19, 2005). ISBN:
978-0596001735

[12] Lutz, Mark (2009). Learning Python (4th ed.). O’Reilly Media. ISBN 978-
0596158064.

[13] Practical PERL for Security Practitioners. SANS. 2004.

[14] Python Security website, part of the OWASP project, retrieved April 2011,
http://www.pythonsecurity.org/.

[15] OWASP Python Static Analysis Project, https://www.owasp.org.

[16] R. Austin, R. Schlesinger, B. Setzer, A Security Scripting Course, Kenne-
saw State University, ACM, 2005.

[17] Brett Cannon, Eric Wohlstadter, Controlling Access to Resources Within
The Python Interpreter, University of British Columbia.

[18] Logilab.org. Logilab - informatique scientifique et gestion de connaissances.
Retrieved April 2011. http://www.logilab.org/

[19] Rough Auditing Tool for Security (RATS). Fortify Software, an HP Com-
pany.

12

40JAIIO - WSegl 2011 - ISBN: 978-987-1312-22-1 - Pégina 53

	Introduction
	Background
	Problem Definition
	Related Work

	Secured Software Development Process
	Security Oriented Activities
	General Considerations
	Best Known Methods
	Static Analysis

	Perl
	Security Overview
	Supporting Tools

	Python
	Security Overview
	Supporting Tools

	Supporting Infrastructure
	Conclusions
	Further Work
	Acknowledgments

