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Abstract. We study the behavior of the rolling horizon procedure for
semi-Markov decision processes, with infinite-horizon discounted reward,
when the state space is a Borel set and the action spaces are consid-
ered compact. We prove the convergence of the rewards produced by the
rolling horizon policies to the optimal reward function, when the horizon
length tends to infinity, under different assumptions on the instantaneous
reward function. The approach is based on extensions of the results ob-
tained in [7] for the discrete-time Markov decision process case and in
[3] for the case of discrete-time Markov games. Finally, we also analyse
the performance of an approximate rolling horizon procedure.

Keywords: Semi-Markov decision processes - Rolling horizon - Dis-
counted criterion.

1 Introduction

In this work we deal with semi-Markov decision processes with the expected total
discounted reward as the performance criterion. Semi-Markov decision processes
(SMDP) generalize Markov decision processes (MDP) by allowing the decision
maker to choose actions whenever the system state changes, modeling the system
evolution in continuous-time and allowing the time spent in a particular state
to follow an arbitrary probability distribution. The system state may change
several times between decision epochs but only the state at a decision epoch is
relevant to the decision maker.

Semi-Markov decision processes with discounted reward are analyzed in [1],
[10], [11]. In particular, continuous-time controlled Markov chains are treated in
[4]. Zero sum semi-Markov games with discounted payoff are studied in [9].

Rolling horizon (RH) is an usual procedure for making decisions in many
infinite stage decision problems. It is based on choosing the best most immediate
action based on the knowledge of the information of the problem just for a certain
number of periods in the future. One design issue of the controller will be then to
determine how many periods in the future must be taken into account, in order
to make the optimal immediate decision [12]. RH strategies are largely used in
several areas: we can mention here production control problems, stabilization
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of control systems, and macroplanning problems. The study of this and other
applications can be found in [8].

In [6] and [7], the accuracy of this procedure for discrete-time MDPs with
bounded and unbounded rewards functions respectively can be found. Similar
results for discrete-time zero-sum Markov games with finite spaces are obtained
in [3].

In [5] we show the uniform geometrical convergence of the values obtained
by RH to the optimal one, in Semi-Markov games with discounted payoff, when
the reward function is bounded. Similar results to those described there, could
be obtained if we deal just with the bounded reward SMDPs case.

The objective of this work is to study the accuracy of theRHmethod applied
to SMDP’s with total discounted reward criterion, when the state space is
assumed to be Borel, and the action space compact. As a particular case, all the
results obtained apply to continuous-time MDPs.

This paper is organized as follows. In Section 2, we present the model, the
notations and we state the assumptions on the data of the problem. In Section
3 we present the performance criterion and the dynamic operator for this case,
mentioning the results on the optimality equation and the recursion scheme
associated. Section 4 contains our contributions about the convergence of RH

policies rewards to the optimal reward. The approach in this section is based
on [7] where the discrete-time case is treated. We include also the study of
an approximate rolling horizon procedure. Finally, Section 5 is devoted to the
concluding remarks.

2 Preliminaries and Notations

We consider a semi-Markov decision model of the form

M := (S,A, {As : s ∈ S}, Q, F, r, α)

where S is the state space and A is the action space. For every s ∈ S, we
define the set As as the set of actions available in state s, and, in such a way
A =

⋃

s∈S As. We put K = {(s, a) : s ∈ S, a ∈ As}. The transition law Q(·|·), is
a stochastic kernel on S given K, and F (·|s, a) is the distribution function of the
holding time in state s ∈ S when action a ∈ As is chosen. The reward function
r is a real-valued function on K and α is a discount factor.

If at time of the n-th decision epoch, the state of the system is sn = s,
and the chosen action is an = a ∈ As, then the system remains in the state
s during a nonnegative random time δn+1 with distribution F (·|sn, an) and an
instantaneous reward r(sn, an) is received.

In order to prove some relevant results about this control model, we have
to make some extra assumptions on the state and action spaces as well on the
reward function.

Assumption 1 a) The state space S is a Borel subset of a complete and sepa-
rable metric space.
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b) For each s ∈ S, the set As is compact.
c) For each s ∈ S, r(s, ·) is upper semicontinuous on As.
d) For each (s, a) ∈ K and each bounded measurable function v on S, the func-

tion a 7→
∫

v(y)Q(dy|s, a) is continuous on As.
e) For each t ≧ 0, F (t|·) is continuous on K.

We will note, for Borel sets X and Y , with P(X) to the family of probability
measures on X endowed with the weak topology, and with P(X|Y ) to the family
of transition probabilities from Y to X.

We define the spaces of admissible histories of the process up to the n-th
decision epoch by H0 := S, and Hn := Hn−1 × (K × R

+) for n ∈ N . A typical
element of Hn is written as hn = (s0, a0, δ1, ..., sn−1, an−1δn, sn).

A Markov strategy (or Markov policy) is a sequence π = {πn} of stochastic
kernels πn ∈ P(A|Hn) such that πn(Asn |hn) = 1 for all hn ∈ Hn and n ∈ N. We
denote by Π the set of all strategies. A strategy π = {πn} is called stationary
if there exists f ∈ P(A|S) such that f(s) ∈ P(As) and πn = f for all s ∈ S and
n ∈ N. In this case, we identify π with f , i.e., π = f = {f, f, ...}. We denote by
ΠS the set of all stationary strategies.

Observe that the decision epochs are Tn := Tn−1+ δn for n ∈ N, and T0 = 0.
The random variable δn+1 = Tn+1 − Tn is called the sojourn or holding time at
stage n.

For each strategy π ∈ Π, and any initial state s there exist a unique prob-
ability measure Pπ

s and stochastic processes {St}, {At} and {δt}. St and At

represent the state and the action at the n-th decision epoch. Eπ
s denotes the

expectation operator with respect Pπ
s .

We note β(s, a) :=
∫

∞

0
e−αtF (dt|s, a) and τ(s, a) = 1−β(s,a)

α
. Also, for any

given function h : K → R and any ξ ∈ P(As) we will write h(s, ξ) instead of
h(s, ξ(s)), and it will be

h(s, ξ) =

∫

As

h(s, a)ξ(da)

whenever the integral is well defined. In particular, we apply this notation to
the functions β(s, ·), τ(s, ·), r(s, ·), Q(j|s, ·).

Remark 1 This semi-Markov environment covers two important special cases:

1. Discrete-time models. In this case F (·|s, a) = δ1(·) for all (s, a) ∈ K. This
correspond to the theory of MDPs.

2. Continuous-time Markov models. This arises if the holding time distributions
is exponential: F (du|s, a) = β(s, a)e−β(s,a)udu, where β(s, a) is a continuous
function from K into [0,∞). The process {St} turns out to be a Markov
process when π is a Markov policy, and a time homogeneous Markov process
when π is a stationary policy.

We shall make further assumptions on the distribution probabilities of the hold-
ing time and the instantaneous reward function, under which we will work in
the future.
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Assumption 2 ρ = sup(s,a)∈K
β(s, a) < 1.

Proposition 1 If there exists a pair of positive numbers θ and ǫ such that

F (θ|s, a) ≦ 1− ǫ

for all s ∈ S and a ∈ As, then Assumption 2 holds with ρ = 1− ǫ+ ǫeαθ.

For any nonnegative measurable function v, define a new function Lv by

(Lv)(s) = sup
a∈As

∫

v(j)Q(dj|s, a) (1)

for s ∈ S. Let Lnv = L(Ln−1v) for n ∈ N, with L0v = v.

Assumption 3 R(s) =
∑

∞

t=0 ρ
t(Ltr0)(s) < ∞ for all s ∈ S, where r0(s) =

supa∈As
|r(s, a)τ(s, a)|.

Assumption 4 There exist a measurable function ω : S → [1,∞) and a positive
constant m such that for all (s, a) ∈ K,

1. |r(s, a)| ≦ mω(s),
2.

∫

ω(j)Q(dj|s, a) ≦ ω(s).

Remark 2 If r is a bounded function on K, then by setting ω ≡ 1 and M any
bound of r, Assumption 4 is satisfied. In [7], it is shown that Assumption 4
implies Assumption 3.

3 Performance Criterion and Related Results.

In order to evaluate the performance of policies, we use a total discounted crite-
rion. We assume that the rewards are continuously discounted, with a discount
factor α. More precisely let, for n ≧ 1, s ∈ S and π ∈ Π, the expected n-stage
α-discounted reward defined by

V π
n (s) := E

π
s

n−1
∑

k=0

e−αTkr(Sk, Ak) ,

where T0 = 0 and Tn = Tn−1 + δn. The infinite horizon total expected α-
discounted payoff is

V π(s) := E
π
s

∞
∑

k=0

e−αTkr(Sk, Ak) .

The objective of the controller is to find (when it exists) a policy that solves,
given the current state s: π(s) = argmaxπ V

π(s). Such a strategy π∗ ∈ Π is said
to be α-optimal, and the function V ∗(s) = supπ∈Π V π(s) is the optimal value
function.
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Alternatively, given a policy π, we can write its reward using the variables
β and τ and obtain for the finite stage horizon and for the infinite horizon
respectively,

V π(s) = τ(s, f0)r(s, f0) + Es

∞
∑

t=1

t−1
∏

k=0

β(Sk, Ak)τ(Sk, Ak)r(Sk, Ak) , (2)

V π
n (s) = τ(s, f0)r(s, f0) + Es

n−1
∑

t=1

t−1
∏

k=0

β(Sk, Ak)τ(Sk, Ak)r(Sk, Ak) . (3)

Let us note M(S) the space of measurable functions on S and M+(S)
the subspace of nonnegative functions of M(S). Under Assumption 3, define
R = {v ∈ M(S) : |v(s)| ≦ R(s) for all s ∈ S}. If ω ∈ M+(S) is strictly pos-
itive, for v ∈ M(S) we define the ω-weighted norm ||v||ω = sups∈S |v(s)|/ω(s)
and Mω(S) the linear subspace of M(S) of the functions with finite ω-weighted
norm, which results a Banach space.

Define the operator T on R or Mω(S) by

(Tv)(s) := sup
a∈As

{

r(s, a)τ(s, a) + β(s, a)

∫

S

v(z)Q(dz|s, a)

}

. (4)

Observe that, if v ∈ R, then |Tv(s)| ≦ r0(s) + ρL|v|(s) ≦ r0(s) + ρLR(s) ≦
R(s), which implies Tv ∈ R. On the other hand, if v ∈ Mω(S), for all (s, a) ∈ K,

∫

v(j)Q(dj|s, a) =

∫

v(j)

ω(j)
ω(j)Q(dj|s, a) ≦ ||v||ωω(s) ,

and ||Tv||ω ≦ m+ρ||v||ω which implies that Tv ∈ Mω(S). The operator T maps
therefore R to itself, and Ms to itself.

Under Assumptions 1, 2 and 3, the supremum is attained for each s ∈ S.
Denoting with f(s) a maximizing action on state s, a well-known result of mea-
surable selections (see for example section 7.5 Semicontinuous Functions and
Borel Measurable Selection of [2]), let us assure that f ∈ M(S).

The next theorem joins results for the finite-stage horizon problem as well as
for the infinite-stage horizon problem under the previous assumptions. Partic-
ularly for the infinite-stage horizon case, provides a Value Iteration scheme for
approximating the optimal value. For its proof we refer to [1].

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold and that we choose
V0 ≡ 0. Then, for n ∈ N, the function Vn := TVn−1 is the optimal value function
for the n-stage horizon problem, and the Markovian policy {f∗

0 , f
∗

1 , ..., f
∗

n} (where
the functions f∗

n are the corresponding maximizing functions) is optimal. Besides,
for all s ∈ S, |V ∗(s) − Vn(s)| ≦ ρnLnR(s) ≦

∑

∞

t=n ρ
tLtr0(s) → 0 as n → ∞,

and V ∗ is the unique function in R satisfying the optimality equation TV ∗ = V ∗.
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Moreover, there exists an optimal stationary policy f∗ for the infinite horizon
case.

In addition, if Assumption 4 holds, T is a contraction mapping on Mω(S)
of modulus ρ, and then, for any V0 ∈ Mω(S), ||V

∗−Vn||ω ≦ ρn||V ∗−V0||ω → 0

as n → ∞. In particular, if V0 ≡ 0, ||V ∗ − Vn||ω ≦ mρn

1−ρ
.

4 Rolling Horizon Procedure

For a wide class of stochastic control problems, obtaining an optimal policy
explicitly is a difficult task. This is why practitioners often use instead a heuristic
method called the Rolling Horizon procedure (also, Receding Horizon, or Model
Predictive Control), which works as follows. To the infinite-stage horizon control
problem is associated a finite-stage horizon problem: for a given integer N (the
horizon length) and a state s, find:

(FHP ) sup
π

E
π
s

N−1
∑

t=0

e−αTkr(st, at) . (5)

Solving this problem results in a sequence of decision rules (i.e. a Markovian
policy):

π∗

N = (fN , fN−1, . . . , f2, f1) (6)

where f1(sN−1) is the best action to be applied at time t = N − 1 when only
one step remains to reach the horizon, f2 is the best decision rule to be applied
when two steps remain to get the horizon, at time t = N − 2, and so on. In
particular, fN (s) is the best decision rule to be applied to the initial state s.

The RH method prescribes to repeatedly solve a finite horizon problem,
taking the current state as initial state. Then, the procedure offers a control
sequence where only the first one of them will be applied.

Specifically, the procedure to construct a RH policy is the following one. Fix
some integer N .

1. At time t, and for the current state st, find the value of fN (st) in the control
problem (FHP).

2. Apply at = fN (st).
3. Observe the achieved state at time t+ 1: st+1.
4. Set t := t+ 1 and st := st+1 and go to step 1.

The RH procedure does not specify how to compute the value fN (st). Its
efficiency is based on the idea that computing the value fN (st) alone is usually
much easier than solving entirely the (FHP), which involves computing the N
decision rules in (6). On the other hand, the performance of the resulting policy
is not the optimal one, although the intuition is that when N is “large enough”,
the performance should be close to the optimal. The practical issue is then
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to choose N so as to obtain a proper compromise between precision and the
computational effort needed to obtain fN (st). We address this issue through
two formal qualitative and quantitative questions. Let UN (s) be the performance
achieved by the RH procedure with horizon length N , starting in state s:

Q1 Under which conditions on the problem is it true that limN→∞ UN (s) =
V ∗(s)?

Q2 Given a state s and ǫ > 0, is it possible to compute N such that |UN (s) −
V ∗(s)| < ǫ?

The next Lemma is a straightforward adaptation of Lemma B1.e of [7].

Lemma 1 E
π
s v(St) ≦ (Ltv)(s) for all π ∈ Π, s ∈ S, v ∈ M+(S) and t ∈ N.

With this it is possible to prove the following theorem, which generalizes
Theorem 4.2 of [7] to the semi-Markov case.

Theorem 2. Suppose that Assumptions 1, 2 and 3 hold. Then, for all s ∈ S,

0 ≦ V ∗(s)− UN (s) ≦ ρNLNR(s) +
1

α

∞
∑

t=N

ρt(Ltr0)(s)

≦

(

1 +
1

α

) ∞
∑

t=N

ρt(Ltr0)(s) .

Proof. Let fN be the N -th RH policy. From Theorem 1, since for all n, the
sequence {Vn} results from successive application of the operator T ,

VN (s) = r(s, fN )τ(s, fN ) + β(s, fN )

∫

S

VN−1(j)Q(dj|s, fN ) . (7)

Also, by definition, the function VN−1 verifies

VN−1(s) = sup
π

E
π
s

[

r(s, f0)τ(s, f0) +

N−2
∑

t=1

t−1
∏

k=0

β(Sk, Ak)τ(St, At)r(St, At)

]

,

and if we we add and subtract
∏N−1

k=0 β(Sk, Ak)τ(SN−1, AN−1)r(SN−1, AN−1):

VN−1(s) ≦ sup
π

E
π
s

[

r(s, f0)τ(s, f0)

+
N−1
∑

t=1

t−1
∏

k=0

β(Sk, Ak)τ(St, At)r(St, At)

−

N−1
∏

k=0

β(Sk, Ak)τ(SN−1, AN−1)r(SN−1, AN−1)

]

.
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Since for all s ∈ S and a ∈ As, by Assumption 3, −r(s, a) ≦ r0(s) we have:

VN−1(s) ≦ VN (s) + sup
π

E
π
s

N−1
∏

k=0

β(Sk, Ak)τ(SN−1, AN−1)r0(SN−1) .

By Lemma 1, Eπ
s |r0(St)| ≦ (Ltr0)(s), and since τ(s, a) ≦ 1

α
for all s ∈ S and

a ∈ As:

VN−1(s) ≦ VN (s) +
ρN−1

α
(LN−1r0)(s) . (8)

If we use this inequality in (7):

VN (s) = r(s, fN )τ(s, fN )

+ β(s, fN )

∫

S

(VN (j) +
ρN−1

α
(LN−1r0)(j))Q(dj|s, fN )

≦ r(s, fN )τ(s, fN ) +
ρN

α
(LNr0)(s) + ρ

∫

S

VN (j)Q(dj|s, fN ).

Iterations of this last inequality gives

VN (s) ≦ r(s, fN )τ(s, fN )

+ β(s, fN )

∫

S

r(j, fN )τ(j, fN )Q(dj|s, fN )

+
ρN

α
(LNr0)(s) +

ρN+1

α
r0(s) + ρ2

∫

S

VN (j)Q2(dj|s, fN ) ,

or, in general for n ∈ N,

VN (s) ≦ r(s0, f0)τ(s0, f0)

+ E

n
∑

t=1

t−1
∏

k=0

β(Sk, fN )τ(St, At)r(St, fN )

+
1

α

N+n
∑

t=N

ρt(Ltr0)(s) + ρn+1
E
fN
s [VN (Sn+1)] . (9)

Let us analyse the terms of the r.h.s. of the last inequality, as n → ∞.
The sum of the first and the second ones converges to UN (s) and the third

to 1
α

∑

∞

t=N ρtLtr0(s). On the other hand, since for all s ∈ S, |VN (s)| ≦ R(s) the
third term satisfies, by Lemma 1

ρn+1
E
fN
s [VN (Sn+1)] ≦ ρn+1

E
fN
s [R(Sn+1)] ≦ ρn+1(Ln+1R)(s) ,

which converges to zero, since

ρn+1(Ln+1R)(s) ≦

∞
∑

t=n+1

ρt(Ltr0)(s) (10)
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and, by Assumption 3, the series
∑

∞

t=0 ρ
t(Ltr0)(s) is supposed to be convergent

for all s ∈ S. Finally (9) implies

VN (s) ≦ UN (s) +
1

α

∞
∑

t=N

ρt(Ltr0)(s) , (11)

and

V ∗(s)− UN (s) ≦ V ∗(s)− VN (s) +
1

α

∞
∑

t=N

ρt(Ltr0)(s)

≦ ρNLNR(s) +
1

α

∞
∑

t=N

ρt(Ltr0)(s) .

The second inequality stated by the Theorem is justified by (10).

Corollary 1 If in Theorem 2, r ≧ 0, then, for all s ∈ S,

0 ≦ V ∗(s)− UN (s) ≦ ρNLNR(s).

Proof. If r ≧ 0, for all s ∈ S and n ∈ N, Vn(s) ≦ Vn+1(s), and we obtain from
(17) that VN (s) ≦ VN+1(s), instead of the Inequality (8), and Inequality (9) is
now

VN (s) ≦ r(s0, f0)τ(s0, f0)

+ E
fN
s

n
∑

t=1

t−1
∏

k=0

β(Sk, fN )τ(St, At)r(St, fN )

+ ρn+1
E
fN
s [VN (Sn+1)] .

From here, following with the proof of Theorem 2, the new bound follows.

As in the case of Theorem 2, the next theorem generalizes Theorem 5.2 of
[7] to the Semi-Markov environment.

Theorem 3. Suppose that Assumptions 1, 2 and 4 hold. Then, for all s ∈ S,

0 ≦ V ∗(s)− UN (s) ≦

(

1 +
1

α

)

mρN

1− ρ
ω(s) ,

or, equivalently

||V ∗ − UN ||ω ≦

(

1 +
1

α

)

mρN

1− ρ
.

If in addition r ≧ 0, then

||V ∗ − UN ||ω ≦
mρN

1− ρ
.

40JAIIO - SIO 2011 - ISSN 1850-2865 - Página 33



10 E. Della Vecchia, S. Di Marco, A. Jean-Marie

Proof. Following the proof of Theorem 2 up to inequality (8) we obtain VN−1(s) ≦

VN (s)+ ρN−1

α
(LN−1r0)(s). If we assume now that Assumption 4 holds, then, for

any t ∈ N

||Ltr0||ω ≦ ||Lt−1r0||ω ≦ ... ≦ ||r0||ω ≦ m ,

and ||R||ω ≦ m
1−ρ

, or, for all s ∈ S, R(s) ≦ m
1−ρ

ω(s), and inequality (8) gives

VN−1(s) ≦ VN (s) +
m

α

ρN−1

1− ρ
ω(s) (12)

and (9) becomes

VN (s) ≦ r(s, fN )τ(s, fN ) +
m

α

ρN

1− ρ
ω(s) + ρ

∫

S

VN (j)Q(dj|s, fN ) .

Keeping iterating, we obtain

VN (s) ≦ r(s0, f0)τ(s0, f0)

+ E
fN
s

n
∑

t=1

t−1
∏

k=0

β(Sk, fN (Sk))r(St, fN (St)))

+
m

α

N+n
∑

t=N

ρt

1− ρ
ω(s) + ρn+1

E
fN
s [VN (Sn+1)] .

As in the proof of Theorem 2, the sum of the first and second term con-
verges to UN (s) and the fourth to zero, as n → ∞. The third converges to
m
α

∑

∞

t=N
ρt

1−ρ
ω(s) = m

α
ρN

1−ρ
ω(s), and then the last inequality becomes

VN (s) ≦ UN (s) +
m

α

ρN

1− ρ
ω(s) .

Finally, from Theorem 1,

V ∗(s)− VN (s) ≦
mρN

1− ρ
ω(s) , (13)

and then

V ∗(s)− UN (s) ≦

(

1 +
1

α

)

mρN

1− ρ
ω(s) .

Now, if we have r ≧ 0, inequality (12) could be put in the tighter form VN−1(s) ≦
VN (s), and continuing with the proof just to inequality (13), for all s ∈ S,
VN (s) ≦ UN (s). Again the result follows combining Theorem 1 with this in-
equality.

Corollary 2 If r is a bounded function on K, and M is a bound of r, then for
all s ∈ S

0 ≦ V ∗(s)− UN (s) ≦

(

1 +
1

α

)

MρN

1− ρ
,
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or equivalently

||V ∗ − UN || ≦

(

1 +
1

α

)

MρN

1− ρ
.

If in addition r ≧ 0,

||V ∗ − UN || ≦
MρN

1− ρ
.

Proof. It follows immediately form Theorem 3, taking m = M and ω ≡ 1.

An Approximate Rolling Horizon Procedure.

Suppose now that the controller does not have an exact information of the value
function of the problem of horizon N − 1, which he should use to compute the
optimal immediate actions, but he know (or is able to compute) an approxima-
tion of this value. Then the controller, standing in state s can choose within the
available actions, the most favorable.

That is, for a function V , supposed to be close in some sense to VN−1, choose

f̃N (s) ∈ arg max
a∈As

{

r(s, a)τ(s, a) + β(s, a)

∫

S

V (j)Q(dj|s, a)

}

. (14)

We will note with ŨN the total discounted reward of the policy f̃N . The
next result gives answers to questions Q1 and Q2 stated in this section for the
sequence of successive rewards ŨN .

Theorem 4. Suppose that Assumptions 1, 2 and 4 holds. Given a function V ∈
Mω(S) such that TV (s) ≧ V (s) for all s ∈ S, and for some N ≧ 1, ||VN−1 −
V ||ω ≦ ε, consider a policy fN ∈ ΠS such that, for any s ∈ S, fN (s) verifies
(14). Then

||V ∗ − ŨN ||ω ≦
mρN

1− ρ
+

2ρε

1− ρ
.

Proof. Start with the equality

V ∗ − ŨN = V ∗ − TV + TV − ŨN . (15)

First,

||V ∗ − TV ||ω ≦ ||V ∗ − TVN−1||ω + ||TVN−1 − TV ||ω

= ||TV ∗ − TVN−1||ω + ||TVN−1 − TV ||ω

≦ ρ||V ∗ − VN−1||ω + ρ||VN−1 − V ||ω ≦
mρN

1− ρ
+ ρε . (16)

On the other hand, for the definition of f̃N :

TV (s) = r(s, f̃N )τ(s, f̃N ) + β(s, f̃N )

∫

S

V (j)Q(j|s, f̃N )

≦ r(s, f̃N )τ(s, f̃N ) + β(s, f̃N )

∫

S

[TV (j) + ε(1− ρ)ω(s)]Q(j|s, f̃N ) .
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If we iterate this inequality under the integral sign of the operator T , for all
n ∈ N,

TV (s) ≦ r(s, f̃N )τ(s, f̃)

+ E
f̃N
s

n
∑

t=1

n−1
∏

k=0

β(Sk, f̃N )τ(Sk, f̃N )r(Sk, f̃N )

+

n+1
∑

k=1

ε(1 + ρ)ρkω(s) + ρn+1
E
f̃N
s [TV (Sn+1)] .

The sum of the first and second term of the r.h.s. of the last inequality tends to

ŨN and the third to
∑

∞

n=1 ε(1+ ρ)ρkω(s) = ρ(1+ρ)ε
1−ρ

ω(s). The fourth term tends
to zero. Therefore it follows that

TV (s) ≦ ŨN (s) +
ρ(1 + ρ)ε

1− ρ
ω(s) , (17)

and, joining (15), (16) and (17):

V ∗(s)− ŨN (s) ≦

[

mρN

1− ρ
+ ρε+

ρ(1 + ρ)ε

1− ρ

]

ω(s)

=

[

mρN

1− ρ
+

ρε

1− ρ

]

ω(s) ,

or equivalently

||V ∗ − ŨN ||ω ≦
mρN

1− ρ
+

2ρε

1− ρ
.

Corollary 3 If in the previous theorem r is a bounded function on K, and M
is an upper bound, then

0 ≦ V ∗(s)− ŨN (s) ≦
MρN

1− ρ
+

2ρε

1− ρ
,

or equivalently

||V ∗ − ŨN || ≦
MρN

1− ρ
+

2ρε

1− ρ
.

5 Concluding Remarks.

Through this work we have dealed with semi-Markov control models with dis-
counted payoff, analyzing the performance of the rolling horizon procedure and
of an approximate rolling horizon procedure.

We have imposed different conditions on the immediate reward function, the
strongest one being its uniform boundedness.

We proved the convergence of the values related to the rolling horizon pro-
cedure to the optimal reward function under these assumptions. We obtain sim-
ple pointwise convergence if Assumption 3 is verified and pointwise geometrical
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convergence when Assumption 4 holds. As a particular case, we have obtained
uniform geometrical convergence for the case of uniformly bounded rewards func-
tions.

Finally we discuss an approximate rolling horizon procedure, based on the
possibility of the controller of not to having perfect prediction of the future
needed to take the best immediate action, but approximations of it.
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