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Abstract. Let K(G) be the clique graph of a graph G. A m-weighting

of K(G) consists on giving to each m-size subset of its vertices a weight
equal to the size of the intersection of the m corresponding cliques of
G. The 2-weighted clique graph was previously considered by McKee. In
this work we obtain a characterization of weighted clique graphs similar
to Roberts and Spencer’s characterization for clique graphs.
Some graph classes can be naturally defined in terms of their weighted
clique graphs, for example clique-Helly graphs and their generalizations,
and diamond-free graphs. The main contribution of this work is to char-
acterize several graph classes by means of their weighted clique graph:
hereditary clique-Helly graphs, split graphs, chordal graphs, UV graphs,
interval graphs, proper interval graphs, trees, and block graphs.

Keywords: weighted clique graphs, graph classes structural characteriza-
tion.

1 Introduction

A complete set is a set of pairwise adjacent vertices. A clique is a complete set
that is maximal under inclusion. We will denote by M1, . . . ,Mp the cliques of
G, and by CG(v) the set of cliques containing the vertex v in G.

Consider a finite family of non-empty sets. The intersection graph of this fam-
ily is obtained by representing each set by a vertex, two vertices being connected
by an edge if and only if the corresponding sets intersect.

The clique graph K(G) of G is the intersection graph of the cliques of G.
Let A be a class of graphs. The notation K(A) means the class of clique

graphs of the graphs in A, that is, B = K(A) if and only if for each G in A,
K(G) belongs to B and for eachH in B, there exists G in A such thatK(G) = H.

Given a graph G, the set of its cliques can be computed in O(mnp) time [31],
where n, m and p are the number of vertices, edges and cliques of G, respectively.
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So, the clique graph K(G) can be computed in O(mnp+np2) time. Note that the
number of cliques of a graph with n vertices can grow exponentially on n, so this
time complexity is not necessarily polynomial in the size of G. In fact, deciding
if the clique graph of a given graph G is a complete graph is a co-NP-complete
problem [20].

The converse problem is also not easy to solve. Clique graphs have been
characterized by Roberts and Spencer in [27], but the problem of deciding if a
graph is a clique graph is NP-complete [1].

A family F of subsets of a set S is separating when for every pair of different
elements x, y in S, there is a subset in F that contains x and does not contain
y or, equivalently, when for each x in S, the intersection of all the subsets in F
containing x is {x}.

A family of subsets of a set satisfies the Helly property when every subfamily
of it consisting of pairwise intersecting subsets has a common element. A graph
is clique-Helly when its cliques satisfy the Helly property.

Clique-Helly graphs are clique graphs [15]. In that case, given a graph H,
the problem of building a graph G such that K(G) = H can be solved with the
same time complexity as building K(H). Nevertheless, the problem of deciding
if the clique graph of a given graph G is clique-Helly is NP-hard [6].

Given a graph H, a weighting of H of size m, or m-weighting of H, consists
on giving a weight w to every complete set of H of size m. A full weighting of
H consists on giving a weight w to every complete set of H.

A weighting of K(G) of size m, or m-weighting of K(G), consists on defining
the weight w for a subset of its vertices {Mi1 , . . . , Mim} as w(Mi1 , . . . , Mim) =
|Mi1 ∩ . . . ∩Mim |. (In the right-hand side, we are considering Mi1 , . . . ,Mim as
cliques of G.) We will denote by Kw

m1,...,m`
(G) the clique graph of G with weight-

ings of sizes m1, . . . ,m`. Note that w should be non-decreasing with respect to
inclusion relationship. Also by definition of K(G), if 2 is one of the sizes consid-
ered, then w(Mi,Mj) > 0 for every edge MiMj of K(G).

Weighted clique graphs with weightings restricted to size 2 were considered
in [21, 22], and in [12–14, 23, 24], in the context of chordal graphs.

The organization of this paper is at follows. In Section 2, we introduce some
definitions and results related to clique graphs. In Section 3, we give a charac-
terization of weighted clique graphs similar to Roberts and Spencer’s character-
ization for clique graphs. One of the contributions of this work is to characterize
several classical and well known graph classes by means of their weighted clique
graph, and is given in Section 4. We prove a characterization of hereditary clique-
Helly graphs in terms of Kw

3 and show that Kw
1,2 is not sufficient to character-

ize neither hereditary clique-Helly graphs nor clique-Helly graphs. For chordal
graphs and their subclass UV graphs, we obtain a characterization by means of
Kw

2,3. We show furthermore that Kw
1,2 is not sufficient to characterize UV graphs.

We describe also a characterization of interval graphs in terms of Kw
2,3 and of

proper interval graphs in terms of Kw
1,2. Besides, we prove that {Kw

1 ,Kw
2 } is

not sufficient to characterize proper interval graphs. For split graphs, we give a
characterization by means of Kw

1,2, and prove that {Kw
1 ,Kw

2 } is not sufficient to
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characterize split graphs. Finally, we characterize trees in terms of Kw
1 and block

graphs in terms of Kw
2 , and show that this last class cannot be characterized by

means of their 1-weighted clique graph.

2 Preliminaries

We shall consider finite, simple, loopless, undirected graphs. Let G be a graph.
Denote by V (G) its vertex set and by E(G) its edge set. Given a vertex v of G,
denote by NG(v) the set of neighbors of v in G and by NG[v] the set NG(v)∪{v}.
A vertex v of G is called universal if NG[v] = V (G). A diamond is the graph
Kw

4 −{e}, where e is an edge of the complete graph on four vertices Kw
4 . A claw

is the complete bipartite graph Kw
1,3. If H is a graph, a graph G is called H-free

if G does not contain H as an induced subgraph.
A stable set in a graph is a set of pairwise non-adjacent vertices.
A graph is a split graph if its vertices can be partitioned into a clique and

a stable set. A graph is a star if it has a universal vertex. In that case, the
universal vertex is called the center of the star.

A graph G is an interval graph if G is the intersection graph of a finite
family of intervals of the real line, and it is an proper interval graph if it is the
intersection graph of a finite family of intervals of the real line, all of the same
length. Proper interval graphs are exactly the claw-free interval graphs [28].

Theorem 1 (Fulkerson and Gross, 1965 [8]). A graph G is an interval
graph if and only if its cliques can be linearly ordered such that, for each vertex
vi of G, the cliques containing vi are consecutive.

Such an ordering is called a canonical ordering for the cliques.

Theorem 2 (Roberts, 1969 [28]). A graph G is a proper interval graph if
and only if its vertices can be linearly ordered such that, for each clique Mj of
G, the vertices contained in Mj are consecutive.

Such an ordering is called a canonical ordering for the vertices.
A graph G is a tree if it is connected and contains no cycle. A graph is

chordal if it contains no chordless cycle of length at least 4. Equivalently, a
graph is chordal if it is the intersection graph of subtrees of a tree [4, 9, 33]. A
graph is a UV graph if it is the intersection graph of paths of a tree.

A graph is a block graph if each maximal 2-connected subgraph is a complete
subgraph. Equivalently, a graph is a block graph if it is chordal and diamond-free.

A graph G is domino if all its vertices belong to at most two cliques. If, in
addition, each of its edges belongs to at most one clique, thenG is a linear domino
graph. Linear domino graphs coincide with {claw,diamond}-free graphs [18].

A graph G is dually chordal if it admits a spanning tree T such that, for every
edge vw of G, the vertices of the v—w path in T induce a complete subgraph in
G [3, 30]. In that case, T is called a canonical spanning tree of G.

A graph is hereditary clique-Helly when H is clique-Helly for every induced
subgraph H of G.

40JAIIO - SIO 2011 - ISSN 1850-2865 - Página 123



Class A K(A) Reference

Block Block [16]

Clique-Helly Clique-Helly [7]

Chordal Dually Chordal [3, 11, 30]

Dually Chordal Chordal ∩ Clique-Helly [3, 11]

Hereditary clique-Helly Hereditary clique-Helly [26]

Interval Proper interval [17]

Proper interval Proper interval [17]

Diamond-free Diamond-free [5]

Split Stars

Trees Block [16]

Triangle-free Linear domino [25]

Linear domino Triangle-free [5]

UV Dually Chordal [30]

Table 1. Clique graphs of some graph classes

Clique graphs of many graph classes have been characterized. The known
results involving the graph classes that will be considered in this paper are
summarized in Table 1.

3 Characterization of weighted clique graphs

The characterization of clique graphs is as follows.

Theorem 3 (Roberts and Spencer, 1971 [27]). A graph H is a clique graph
if and only if there is a collection F of complete sets of H such that every edge
of H is contained in some complete set of F , and F satisfies the Helly property.

A similar characterization for 2-weighted clique graphs was presented in [21,
27]. We can extend this characterization to weighted graphs.

Theorem 4. Let H be a graph, provided with weightings w of sizes m1, . . . ,m`.
Then there exists a graph G such that H = Kw

m1,...,m`
(G) if and only if there is

a collection F of complete sets of H, not necessarily pairwise distinct, such that:
(a) every edge of H is contained in some complete set of F ,
(b) F satisfies the Helly property,
(c) F is separating,
(d) for every 1 ≤ j ≤ `, each complete set Mi1 , . . . ,Mimj

of H is contained in

exactly w(Mi1 , . . . ,Mimj
) complete sets of F .

It would be interesting to analyze the computational complexity of deciding
if a weighted graph is a weighted clique graph. For 1-weightings, the result is
negative.
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Theorem 5. The problem of deciding if a 1-weighted graph is a 1-weighted
clique graph is NP-complete.

It remains as an open question to analyze the problem for other weighting
sizes.

4 Characterization of classical graph classes by means of

the weighted clique operator

Some graph classes can be naturally defined in terms of their weighted clique
graphs. This is the case of clique-Helly graphs and their generalizations. A family
of subsets of a set satisfies the (p, q, r)-Helly property when every subfamily of
it in which every collection of p members have q elements in common, has a
total intersection of at least r elements. A graph is (p, q, r)-clique-Helly when its
cliques satisfy the (p, q, r)-Helly property [6].

Proposition 1. Let G be a graph. Then G is clique-Helly if and only if
Kw

3,...,ω(K(G))(G) satisfies w(Mi1 , . . . ,Mi`) > 0 for every complete set Mi1 , . . . ,Mi`

of K(G).

Proposition 2. Let G be a graph. Then G is (p, q, r)-clique-Helly if and only if
Kw

3,...,ω(K(G))(G) satisfies that every complete set in which all its subsets of size
p have weight at least q, has weight at least r.

By the results in [7] shown in Table 1, we have the following corollary.

Corollary 1. Let if H be graph and w a full weighting of H that is strictly
positive over every complete set of H. If there is a graph G such that H =
Kw

3,...,ω(H)(G), then H is clique-Helly.

Diamond-free graphs have also a natural characterization in terms of their
weighted clique graph. It is proved in [5] that a graph is diamond-free if and
only each edge belongs to exactly one clique. This property can be restated as
follows.

Proposition 3. Let G be a graph. Then G is diamond-free if and only if Kw
2 (G)

satisfies w(Mi,Mj) = 1 for every edge MiMj of K(G).

In particular, by the results in [5] shown in Table 1, we have the following
corollary, that was also pointed out in [21].

Corollary 2. Let H be a graph and w a 2-weighting of H. If w(vi, vj) = 1 for
every vivj in E(H), then there exists some graph G such that H = Kw

2 (G) if
and only if H is diamond-free.

Moreover, since diamond-free graphs are clique-Helly, we have that in a fully
weighted clique graph of a diamond-free graph, the weight of each complete
set of size at least two is exactly one. In [2], the authors establish when a 1-
weighted graph H is Kw

1 (G) for some diamond-free graph G, thus completing
the characterization of weighted clique graphs of diamond-free graphs.
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Theorem 6 (Barrionuevo and Calvo, 2004 [2]). Let H be a graph and w

a 1-weighting of H. Then there exists some diamond-free graph G such that
H = Kw

1 (G) if and only if H is diamond-free and w(M) ≥ max{2, |CH(M)|} for
each M in V (H).

The result above can be obtained also as a corollary of Theorem 4. Joining
it with Proposition 3, we have the following Corollary.

Corollary 3. Let H be a graph and w be weightings of H of sizes 1 and 2,
such that w(Mi,Mj) = 1 for each edge MiMj of H. Then there exists a graph
G such that H = Kw

1,2(G) if and only if H is diamond-free and w(M) ≥
max{2, |CH(M)|} for each M in V (H).

It is clear that diamond-free graphs cannot be characterized by their 1-
weighted clique graph, since the diamond and two triangles sharing a vertex
have the same 1-weighted clique graph.

A connected graph G with at least two vertices is triangle-free if and only if
w(M) = 2 for each vertex M of Kw

1 (G). Indeed, the results in [25] showed in
Table 1 imply the following proposition.

Proposition 4. Let H be a graph and w a 1-weighting of H such that w(M) = 2
for each vertex M of H. Then there exists a graph G such that H = Kw

1 (G) if
and only if H is linear domino.

Also linear domino graphs can be naturally defined in terms of their weighted
clique graph.

Proposition 5. Let G be a graph. Then G is linear domino if and only if Kw
2 (G)

is triangle-free and satisfies w(Mi,Mj) = 1 for every edge MiMj of K(G).

In the remaining of this section, we will show characterizations of some clas-
sical and widely studied graph classes in terms of their weighted clique graphs.
Many of them are subclasses of chordal and/or clique-Helly graphs.

4.1 Hereditary clique-Helly graphs

A first characterization of hereditary clique-Helly graphs is the following.

Theorem 7. Let G be a graph. Then G is hereditary clique-Helly if and only
if Kw

2,3(G) satisfies w(Mi,Mj ,Mk) = min{w(Mi,Mj), w(Mj ,Mk), w(Mi,Mk)},
for every 1 ≤ i < j < k ≤ |K(G)|.

Moreover, this property holds also for m-weightings, with m ≥ 3.

Theorem 8. [26, 32] Let G be an hereditary clique-Helly graph, and let m ≥ 3.
Then Kw

2,m(G) satisfies w(Mi1 , . . . ,Mim) = min{w(Mi,Mj) : i, j ∈ {i1, . . . , im}, i <
j}, for every 1 ≤ i1 < . . . < im ≤ |K(G)|.

40JAIIO - SIO 2011 - ISSN 1850-2865 - Página 126



Fig. 1. Two graphs G, G′ such that Kw

1,2(G) = K
w

1,2(G
′). The rightmost one is hered-

itary clique-Helly, the leftmost one is not even clique-Helly. The leftmost one is UV ,
the rightmost is not.

The examples in Figure 1 show that Kw
1,2 is not sufficient to characterize

neither hereditary clique-Helly graphs nor clique-Helly graphs. But we can obtain
a characterization of hereditary clique-Helly graphs in terms of Kw

3 .

Theorem 9. Let G be a graph. Then G is hereditary clique-Helly if and only if
Kw

3 (G) satisfies w(Mi,Mj ,Mk) ≥ min{w(Mi,Mj ,M`), w(Mj ,Mk,M`), w(Mi,Mk,M`)},
for every complete set Mi, Mj, Mk, M` of size four in K(G).

4.2 Trees and block graphs

The characterization of trees and block graphs are as follows.

Theorem 10. Let G be a graph, |V (G)| > 1. Then G is a tree if and only if
Kw

1 (G) is a connected block graph such that w(Mi) = 2, 1 ≤ i ≤ |K(G)|.

Theorem 11. Let G be a connected graph. Then G is a block graph if and only
if Kw

2 (G) is a connected block graph such that w(Mi,Mj) = 1, for every edge
MiMj of K(G).

The same example used in the case of diamond-free graphs shows that block
graphs cannot be characterized by their 1-weighted clique graph.

4.3 Split graphs

A characterization of split graphs in terms of Kw
1,2 is the following.

Theorem 12. Let G be a graph. Then G is split and connected if and only if
Kw

1,2(G) is a star with center M1 and w(M1,Mj) = w(Mj)− 1, 2 ≤ j ≤ |K(G)|.

The examples in Figure 2 show that Kw
1 and Kw

2 are not sufficient to char-
acterize split graphs.
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Fig. 2. Two graphs G, G′ such that K
w

1 (G) = K
w

1 (G′) and K
w

2 (G) = K
w

2 (G′). The
leftmost one is split, the rightmost one is not. The rightmost one is proper interval,
the leftmost one is not.

4.4 Interval graphs

For interval and proper interval graphs, we have the following characterizations.

Theorem 13. Let G be a graph. Then G is an interval graph if and only if
Kw

2,3(G) admits a linear ordering M1, . . . ,Mp of its vertices such that for every
1 ≤ i < j < k ≤ p, w(Mi,Mj ,Mk) = w(Mi,Mk).

Theorem 14. Let G be a graph. Then G is a proper interval graph if and only
if Kw

1,2(G) admits a linear ordering M1, . . . ,Mp of its vertices such that for every
triangle Mi,Mj ,Mk, 1 ≤ i < j < k ≤ p, w(Mj) = w(Mi,Mj) + w(Mj ,Mk) −
w(Mi,Mk).

The examples in Figure 2 show that Kw
1 and Kw

2 are not sufficient to char-
acterize proper interval graphs.

4.5 Chordal and UV graphs

It is a known result that clique graphs of chordal graphs are dually chordal
graphs. Moreover, it holds that, for a chordal graph G, there is some canonical
tree T of K(G) such that, for every vertex v of G, the subgraph of T induced
by CG(v) is a subtree. Such a tree is called a clique tree of G. McKee proved [24]
that those trees are exactly the maximum weight spanning trees of Kw

2 (G). Also
in the context of chordal graphs, 2-weighted clique graphs where considered in
[10, 12–14, 19, 23, 29].

Theorem 15. Let G be a connected graph. Then G is chordal if and only if
Kw

2,3(G) admits a spanning tree T such that for every three different vertices
Mi,Mj ,Mk of T , if Mj belongs to the path Mi—Mk in T , then w(Mi,Mj ,Mk) =
w(Mi,Mk).

Let G be a connected UV graph, and let (T,F) be a representation of G as
the intersection graph of a family of paths of a tree T , F being the family of
paths. By taking a tree T that minimizes the number of vertices preserving the
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intersection relationship in the family of paths, we obtain that V (T ) = C(G)
and each path in F representing vertex v corresponds to CG(v) [12]. That will
be called a clique tree of the UV graph G.

Theorem 16. Let G be a connected graph. Then G is UV if and only if Kw
2,3(G)

admits a spanning tree T such that for every three different vertices Mi,Mj ,Mk

of T , if Mj belongs to the path Mi—Mk in T , then w(Mi,Mj ,Mk) = w(Mi,Mk),
and for every M in T and Mi,Mj ,Mk in NT (M), it holds w(Mi,Mj ,Mk) = 0.

The examples in Figure 1 show that Kw
1,2 is not sufficient to characterize UV

graphs.
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