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Abstract. In this work a systematic design procedure of a plant-wide control 
structure is applied to a well known benchmark problem of a large-scale pulp 
mill process [2]. Because of the high dimension of this system it was necessary 
to develop some additional computer aided tools for support calculations. It is 
based on the minimization of the sum of squared deviations (SSD index) [19] 
which is done via the use of genetic algorithm. It represents a good trade-off 
between achieve acceptable results with less computational effort. Previous 
works presented alternative solutions but using several heuristic considerations 
for reducing the problem dimensionality. The obtained performance with the 
selected control structure and the decentralized strategy presented previously 
[3] are compared. Several closed-loop simulations for critical set point changes 
are rigorously evaluated here. 

Keywords: computer aided design, plant-wide control, large-scale pulp 
industry, genetic algorithm, dynamic simulation, performance evaluation 

1   Introduction 

The academic and industrial communities have expressed great interest in studying 
realistic large-scale industrial process control problems [3,4,7,8,10,12,14,16]. In this 
context, [2] introduced a complete benchmark problem of a pulp mill process, 
including both the fiber line and the chemical recovery areas.  

This benchmark presents great challenges in terms of plant-wide control as it has 
several features of interest including: lead/lag responses, long time delays, 
interactions from multiple loops, inverse responses and slow settling times. In 
addition, the dynamic simulations of the pulp mill process demand high 
computational times given the dimension of the system: approximately 8200 states, 
114 controlled variables (CVs) and 82 manipulated variables (MVs). 

There have been a large number of contributions on plant-wide control structure 
design based on heuristics and process knowledge. Among the most notable 
contributors are [11], [9] and co-workers. Plant-wide control is commonly seen as 
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composed of these main steps: determination of the MVs and the CVs, control 
configuration, and controller selection and design. The control configuration refers to 
determining the interconnections between the CVs and the MVs. The controller 
selection and design involve the determination of control algorithm as well as the 
tuning parameters for closed-loop operation. These steps could be addressed 
sequentially; however, all of them affect the others. 

 In this work, the application of a systematic methodology for the control structure 
design in the pulp mill benchmark problem is presented. Although the methodology 
was successfully tested in smaller benchmarks [12,13,14,20,21] the main contribution 
here is its implementation in a large-scale industrial case. This involves the 
development and utilization of some computational tools in order to find a good 
solution despite the complexity of this kind of systems. 

The first step is to stabilize the process, which is carried out by seven control 
loops. This allows the application of a step-test identification technique in order to 
obtain both the steady-state gains and linear dynamic models for all the input-output 
variables involved in the process. From this steady-state process information, the 
problem to solve is the proper CVs selection together with the optimal sensors 
network definition. 

In this context, it is usual finding in the literature the application of heuristic 
criteria for reducing the problem dimensionality and achieve an acceptable CVs 
selection. The objective here is to use a methodology that rigorously drives to the 
process control structure with as little as possible heuristic considerations. The 
methodology is based on the minimization of the sum of squared deviations (SSD) 
index [19] for searching the most suitable set of CVs to be considered in the control 
structure. This search represents a combinatorial problem that can be efficiently 
solved through the use of a genetic algorithm. For this case study the number of 
variables involved are 100 CVs and 65 MVs, hence the combinations to be tested are 
about 1027. 

The CVs-MVs pairing selection is performed in a systematic way through the use 
of the Normalized Relative Gain Array (NRGA) [6] which is based on the RGA 
matrix and its selection rules. Thus the pairing problem can be interpreted as an 
assignment problem and the Hungarian algorithm is applied in order to obtain the best 
pairing. These algorithms help on handling the large number of possible pairing sets 
involved in this system. 

Finally, for testing the results the controllers tuning is performed through the 
internal model control (IMC) theory using the previously identified linear models. 

The obtained process control structure and the decentralized strategy presented by 
[3] are compared based on their capacity to reduce the total error and maximize the 
operating profits. The control strategies are tested through closed-loop simulations of 
the rigorous nonlinear dynamic model including several set point changes. 

The whole process simulator is implemented in Matlab 6. It consists of Simulink 
models, s-functions and numerous scripts (m-files and c-files) including configuration 
scripts for simulations [18]. 

The complete description of this work is given according to the following 
organization: in section 2 a brief description of the process and its objectives are 
presented. In section 3 the systematic methodology is detailed through its main steps. 
The various tools that allow a performance evaluation are discussed in section 4. In 
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section 5, the resulting dynamic behavior of the system and the operation costs are 
analyzed. Finally, in section 6 the conclusions and future works are exposed. 

2   Case Study: Pulp Mill Process 

2.1   Process Description 

The Pulp Mill process is shown in Figure 1 in a simplified way as that given by [2]. 
The plant consists of two major areas such as the Fiber line and the Recovery Plant. 
 

 

Fig. 1. The Pulp Mill Process. 

The objective of the Fiber line area is to produce fibers from wood chips at a 
desired production rate and quality. Major raw materials of this process are wood 
chips and chemicals called white liquor (WL) which consists primarily of NaOH and 
NaSH. They are combined in a pressurized impregnation vessel, where wood chips 
are saturated in the white liquor. They then enter the Digester, where lignin in the 
wood starts to dissolve out. The main controlled variable in this unit is the Kappa 
Number, which is a measure of the amount of remaining lignin in the wood. Fibers 
are further washed in a Brown Stock drum washing section, to remove chemicals and 
residual lignin. Fibers then are bleached in several Bleaching Towers, to further 
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remove lignin and achieve a target brightness coefficient. The bleaching sequence 
includes post-delignification with Oxygen (O) and white liquor, Chlorine Dioxide 
(D1), Sodium Hydroxide (E), and brightening via Chlorine Dioxide (D2). At the end 
of each bleaching stage, pulp is washed to removed chemicals and lignin content 
before going to the next bleaching stage. On the other hand, the exit of the chemical 
streams from the Digester and washing stages now has many organic residuals and 
brown colour and, hence, are called ”Weak Black Liquors” (WBL). To recover 
chemical components and energy from these streams, the weak black liquors are sent 
to the Recovery Plant. 

The most important objectives of the Chemical Recovery area are to obtain energy 
from the combustion of black liquor and regenerate the NaOH and Na2S from the 
weak black liquor coming from the Digester, extract liquor flows and the brown stock 
washing system. This regeneration procedure becomes the overall process 
economically feasible. In the multi-effect evaporation system the weak black liquor is 
converted in black liquor. The black liquor is sent to the recovery boiler where the 
combustion of the organic liquor provides the energy to produce high pressure steam 
and to carry out the reduction reactions to recover Na2S from Na2SO4 and other 
sulphur-based salts, and to recover Na2CO3. The black liquor solids is mixed with 
weak wash water to produce green liquor. The green liquor goes through the 
slaking/causticizing reactions to produce white liquor. This white liquor is sent back 
to the digester and the oxygen reactor. The lime mud from the white liquor clarifier is 
sent to the lime kiln to recover the lime. 

2.2   Process Objectives 

The objectives of the process (product quality, production rate, product grades and 
reactor yields) and process constraints (operational, safety and environmental) are 
specified in Tables 1, 3 and 4 in [2]. The goal is to produce pulp at the desired 
brightness and production rate at a minimum cost. 

In this work it is assumed that the process is operating under nominal conditions, 
with a production rate of 630 tons/day, E Kappa number of 2.50 and D2 Brightness 
equal to 0.81. 

The details of the mathematical models as well as the source/binary code for all the 
unit operations are available as a benchmark problem for download from the Doyle’s 
Group web site [18]. 

3   Systematic Procedure for Plant-wide Control Structure Design 

3.1   Initial Considerations 

The fiber line sub process has 38 MVs and 40 CVs, and the chemical recovery sub 
process has 44 MVs and 74 CVs, for a total of 82 MVs and 114 CVs that are initially 
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available for control of the process. Tables A1, A2, A4 and A5 in [2] show the list of 
all the variables of the process.  

In this work, the nomenclature used for all the variables is the same as in [2]. 

3.2   Process Stabilization 

The pulp mill process open-loop response is unstable, so the first step is to stabilize 
it. From open-loop simulations, it was determined that the levels in: the storage tank 
(CV34), D2 tower (CV38), smelt dissolving tank (CV53), storage tank #1 (CV57), 
mud mixing tank (CV73) and storage tank #2 (CV74), and the smelt dissolving tank 
condensate temperature (CV55) should be controlled to maintain stability in the 
process.  

The corresponding pairing between these CVs and MVs, and the controller 
selection for each loop was adopted to be the same as [3]. Table 1 shows that 
proportional (P) control was used for all the level control loops and proportional-
integral (PI) control for the temperature control loop.  

Table 1.  Control loops for stabilizing the process. 

CV Nº MV Nº Kc Ti 
34 18 -1,67 - 
38 38 -5 - 
53 62 5 - 
55 81 -0,005 30 
57 46 3 - 
73 60 -2,92 - 
74 63 -2,92 - 

3.3   Model Identification 

After all the unstable modes were stabilized, the open-loop rigorous nonlinear 
model was used to obtain both the steady-state gains and the dynamic models 
(transfer functions) of all the input-output of the process. These models were 
identified through an open-loop step-test, which begins with the excitation of each 
MV using a step of +1% above the nominal operation point, and a length of 3000 
hours. The recorded data (sets of CVs) was collected using a sampling time of 5 
minutes.  The data was normalized using scaling factors as in [2]. As an example, for 
a given input mvi and output cvk the corresponding normalized steady-state gain gk,i is 
obtained as:  

 

max

max

,
final ss

final ss

k k i

k i
i i k

cv cv mv
g

mv mv cv

− ∆
=

− ∆
 (1) 
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where 
finalkcv  and 

finalimv  are the unscaled final values, 
sskcv  and 

ssimv  are the 

steady-state values, and 
maxkcv∆  and 

maximv∆  are the maximum range of variation of 

the input mvi and output cvk respectively. The values of the scaling factors are 
available in the script “general_parameters.m” in the benchmark. The obtained gk,i for 
all the input-output pairs of the process conforms the normalized steady-state gain 
matrix G  which has dimension 105-by-74.   

The first order with and without time delay transfer functions were identified using 
the improved “pem” algorithm available in [17], obtaining linear, low-order, 
continuous-time transfer function (“idproc”) type models. These linear models are 
suitable for the preliminary controllers tuning using the IMC tuning method presented 
by [15]. 

3.4   Optimal Selection of the Controlled Variables 

This procedure takes into account the generalized control structure based on 
internal model control indicated in Figure 3 where ys is the CVs vector, yr is the non-
controlled variables (NCVs) vector and u is the MVs vector, of dimension n-by-1, (m-
n)-by-1 and n-by-1 respectively. The process can be divided into two parts: 

sG  of 

dimension n-by-n which includes the n CVs, and 
rG  of dimension (m-n)-by-n which 

includes the m-n NCVs. In addition, 
sG%  is a model of 

sG , and 
cG  is the controller.  

The methodology is based on perfect control in a mean square sense, given that n 
variables are perfectly controlled and minimizing the SSD of the m-n NCVs. In 
steady-state, assuming that 

s sG G=% , the process outputs can be written: 

  

,set set
s s sy y y= ∀  (2) 

  

1 set
r r s sy G G y− =    (3) 

 
Equation (3) can be written as: 

 

set
r sp sy S y=  (4) 

 

1
sp r sS G G− =    (5) 
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Fig. 3. Internal Model Controller structure. 

 
As shown in equation (4), the error between the NCVs and their nominal operating 

point depends strongly on the selection of CVs. Then the idea is to find the optimal 
selection of the n CVs  that minimizes: 

 

2

2
1

( )
n
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i

SSD e i
=

=∑  

 
2

2
1

( )
n

n
sp set

i

S y i
=

=∑  

 

(6) 

 

 
where 

spe  refers to the steady-state error in the NCVs when are excited by set point 

changes. The vector ( )n
sety i  of dimension n-by-1 has a value of one in position i and 

zeros at the remaining elements. From [19] it can be shown that: 
 

2

2
1

( ) ( )
n

n T
sp set sp sp

i

S y i tr S S
=

=∑  (7) 

 
The operation defined as tr() performs the sum of the elements located along the 

matrix diagonal. Then: 
 

( )T
sp spSSD tr S S=  (8) 

 
The n selected CVs that minimizes SSD ensures that the process will remain as 

close as possible to its nominal operating point when be excited by set point changes. 
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3.5   Implementation via Genetic Algorithm 

Given that n = 74 CVs from m = 105 potential CVs should be selected in order to 
match all the n MVs, then the total possibilities to be evaluated are  

( )
26105!

4.10
74! 105 74 !

≅
−

. 

From the process requirements, the D2 production rate (CV3), the digester kappa 
number (CV4), the O kappa number (CV19), the E kappa number (CV22) and the D2 
brightness (CV26) have to be controlled. In addition, from the performed step-test it 
was seen that the time evolution of all the CVs were identical when exciting 
independently with MV48, or MV53 or MV73 to MV80. This is reflected in the 
normalized steady-state gain matrix columns associated with these MVs, which 
coincide element wise. It was decided to consider only one of these manipulated 
variables (MV53) and disregard the others for a possible input-output pairing. From 
these considerations, then the possibilities to be evaluated are 

( )
27100!

1.10
65! 100 65 !

≅
−

. 

Given the magnitude of the number of possibilities, then the use of genetic algorithm 
(GA) is proposed because it is able to solve problems of very large dimension. 

Using the AG concepts, the problem can be parameterized as a function of the 
selected CVs. That is, state the problem as a function of the chromosome 

1 2, ,...,
cj NI g g g =   , where j = 1, …, Ni with Ni the initial population dimension, Nc 

the number of potential CVs and gi the genes belonging to the binary alphabet with i = 
1, …, Nc. A value of one in a particular gene means that the corresponding variable is 
selected, and a value of zero implies the variable is not selected to be controlled. 

Finally, the minimization of equation (8) as a function of Ij allows for the optimally 
selection of the CVs:  

 

{ }min ( ) min [ ( ) ( )]
j j

T
j sp j sp j

I I
SSD I tr S I S I=  (9) 

 
Ssp is a function of Ij given that Gs and Gr are modified according to the different 
chromosomes. 

The algorithm toolbox developed by [5] was used here. The main parameters 
adopted for running the algorithm are shown in the Table 2. The length of the 
chromosome is 100 because it must be decided which variables have to be controlled 
over 105, but 5 of them are previously chosen to be controlled from the process 
requirements. Given computational constraints, Ni = 13000 was adopted. As a result, 
it was necessary to repeat several times the execution of the GA in order to confirm 
the obtained solution. The selection method used was the roulette wheel.  

Table 2.  Genetic Algorithm parameters setting. 

Ni: initial 
population 

Nc: nº of 
potential CVs 

Ng: nº of 
generations 

Mutation 
Probability 

Crossover 
Probability 

13000 100 700 0,7 / Nc 0,7 
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3.6   Control Configuration and Controller Design 

The control configuration involves determining the interconnections between the 
CVs and the MVs. Each CV-MV pair forms a single-input single-output (SISO) 
control loop, where the other MVs of the process behave as perturbations to the 
current loop. An appropriate pairing of the CVs-MVs of the process should minimize 
this interaction effect. 

Although there are different methods, relative gain array (RGA) [1] analysis allows 
to determine the MVs-CVs pairings for deciding the process control structure.  
The RGA matrix can be calculated as [1]:  
 

1( ) ( )T
s s sG G G−Λ = ⊗  (10) 

 
where ⊗  denotes element-by-element multiplication and 

sG  the square n-by-n 

matrix obtained from the GA solution. Values of  RGA elements close to 1 means that 
a slight interaction effect in the corresponding control loop is performed when the 
other loops are closed. Values less than 0.5 indicate a certain interaction effect and 
negative values are not desirable. Therefore, values close to 1 represents the best 
condition to avoid the interaction effect. 

For small-scale processes it is possible to see which would be a good configuration 
from the selection rule given above. But for the pulp mill process the number of 
possible pairing sets increases significantly. However, is extremely complicated to 
apply the selection rule without the use of an algorithm that automates the searching. 

Through the use of the Normalized Relative Gain Array (NRGA) concept as in [6] 
it is possible to interpret the pairs selection as an assignment problem which can be 
solved by Hungarian algorithm [6]. Thus the pairing selection can be performed in a 
systematic way.  

Figure 4 shows the RGA matrix of the process obtained by equation (10) where all 
the MV-CV pairs selected according to [6] can be seen. The MVs (x-axis) and CVs 
(y-axis) have been rearranged to make the matrix as close as possible to a diagonal 
matrix. Only for the purpose of better visualization, RGA values were filtered 
between 0 and 9. 

The controller selection and design involve the determination of control algorithm 
as well as the controller parameters for closed-loop operation. 

A close examination of the Figure 4 shows that there are sub-blocks where the 
input-output interactions are important. This has serious difficulties for adjusting and 
implementing the PI controllers. 
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Fig. 4. Steady-state RGA matrix of the process. 

4   Performance Evaluation 

For the performance evaluation of the control strategies, two different indexes, the 
error improvement percent (EIP) and the profit improvement percent (PIP) were used. 
The first one reflects the dynamic performance and the second concerns the economic 
benefits. These indexes are based on the time evolutions of the dynamics of the CVs 
and the MVs. The EIP is defined as: 

  

100
base new

base

IAE IAE
EIP

IAE

−=  (11) 

 
The superscript base refers to the control strategy proposed by [3] and the superscript 
new refers to the actual control strategy for the process. The Integral Absolute Error 
(IAE) is defined as: 

               

( ) ( )
k

IAE k k y k= −∑  
(12) 

 
where y is the output and r corresponds to the desired value. The PIP is defined as: 
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100
new base

base

TOP TOP
PIP

TOP

−=  (13) 

 
The PIP reveals how much the economic benefits were increased by the utilization of 
the new control strategy with respect to the one used as base. The Total Operating 
Profit (TOP) is defined as: 

   

.. ..TOP Sales Penalty Costs Raw Costs= − −  (14) 

 
 The TOP is the economic benefit calculated for each unit of the process. The Raw 

Costs are the costs of raw materials used, the Penalty Costs are the costs relative to 
penalties from environmental regulations or violations of product quality, and Sales 
represents a proportional value to the production of the unit. A good control strategy 
should be able to reduce the error and improve the process economics simultaneously. 

 5   Results 

For the performance evaluation of the obtained process control structure versus the 
control strategy presented by [3], closed-loop simulations of the rigorous model were 
performed with both strategies, including critical set point changes. The set point 
sequence used is described in Table 3. The total simulation time was 200 hours. 

Table 3.  Sequence of set point changes applied to the process. 

Time [hr] Event New Value 
0 Kiln CaCO3 % change 0,0151 

91,6 Bleach Pulp Production change 692,8 
100,2 E Tower Temperature change 356,5 
101,5 D2 Tower Temperature change 355,5 
101,5 D2 Brightness change 0,86 

 
 

Figures 5 to 7 show the closed-loop dynamics of key CVs during the set point 
changes described for both control strategies. The set point is represented in dash dot 
black, the new control in solid red and the control proposed by [3] in dotted blue. 
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Fig. 5. CV3 (D2 Production Rate). 
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Fig. 6. CV26 (D2 Brightness). 

 
The simulation results show that the obtained control structure fulfils with the 

operating objectives showing a similar dynamic performance against set point 
changes as that presented in [3]. Table 4 shows the IAE and EIP indexes for key CVs 
corresponding to the closed-loop simulation with set point changes. 
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Fig. 7. CV80 (Kiln CaCO3 mass fraction). 

Table 4.  Dynamic performance comparison. 

CV Nº Description IAE (Base) IAE (New) EIP % 
3 D2 Production Rate 93,3 72,1 22,7 
23 E Tower Temp. 1,89 1,57 16,9 
25 D2 Tower Temp. 2,01 2,27 -12,7 
26 D2 Brightness 426,5 445,5 -4,4 
80 Kiln CaCO3 53,7 21,0 60,9 

 
 

Tables 5 and 6 show the economic performance of both control strategies. It is 
observed that the new control structure was able to improve total profits by 5,66%. 
This is mostly due to the fact that it performs the production rate and the D2 
brightness set point changes faster than the original strategy, which increased product 
sales and minimized the brightness penalty during the operation mode transition. This 
bearing in mind that if the pulp brightness exceeded ±1% of the set point, it could not 
be sold.  

 

Table 5.  Economic performance. Original control structure 

Operation 
Unit 

Raw Costs 
($) 

Penalty 
Costs ($) 

Sales ($) 
 

TOP ($) 
 

Digester  788.710 - 2.610.900 1.822.200 
Brown Stock  1.676 - - -1.676 
Oxygen Tower  33.988 - - -33.988 
Bleach Plant  252.910 125.620 - -378.530 
Evaporators  402.550 - 269.440 -133.120 
Recaust  86.083 - - -86.083 
Lime Kiln  32.791 2 - -32.793 
Total 1.598.700 125.620 2.880.300 1.156.000 
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Table 6.  Economic performance. New control structure 

Operation 
Unit 

Raw Costs 
($) 

Penalty 
Costs ($) 

Sales ($) 
 

TOP ($) 
 

PIP % 
 

Digester  780.390 - 2.615.300 1.834.900 0,70 
Brown Stock  1.695 - - -1.695 -1,14 
Oxygen Tower  31.187 - - -31.187 8,24 
Bleach Plant  278.670 55.708 - -334.370 11,66 
Evaporators  399.360 - 268.850 -130.500 1,96 
Recaust  84.992 - - -84.992 1,26 
Lime Kiln  30.761 - - -30.761 6,19 
Total 1.607.100 55.708 2.884.200 1.221.400 5,66 

 

6   Conclusions 

A systematic methodology based on genetic algorithm which takes into account as 
little as possible heuristic considerations was used to develop a decentralized large-
scale process control structure. It showed an acceptable performance against critical 
set point changes when compared with the proposed by [3].  

This work is meant to give the necessary tools for implementing the systematic 
methodology for plant-wide control of the pulp mill benchmark problem and not to 
present the best or the only workable control structure. Several topics should be 
addressed in order to achieve improvements, like determining the minimum number 
of manipulated variables to be considered by the genetic algorithm so as to minimize 
the number of control loops. In addition the use of the SSD index considering 
disturbance changes in order to treat a more realistic case.   

As future work the idea is to improve the overall dynamic performance of the 
system from the implementation of a new methodology based on the net load 
evaluation index as in [12]. This methodology provides a trade-off solution between 
servo and regulator behavior depending on the control objectives, enabling improved 
disturbance rejection. 

Finally, given the high computational times involved, it is possible to consider if 
parallel computing or similar could assist in order to accelerate the dynamic 
simulations for obtaining results. 
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