
Real-time Rescheduling of Production Systems using 
Relational Reinforcement Learning 

Jorge Palombarini1, Ernesto Martinez
 

2 

1 GISIQ - UTN - Fac. Reg. V. María, Av. Universidad 450,  
5900, Villa María, Argentina. 
jpalombarini@frvm.utn.edu.ar 

2 INGAR(CONICET-UTN), Avellaneda 3657,  
S3002 GJC, Santa Fe, Argentina. 
ecmarti@santafe-conicet.gob.ar 

 

Abstr act. Most scheduling methodologies developed until now have laid down 
good theoretical foundations, but there is still the need for real-time 
rescheduling methods that can work effectively in disruption management. In 
this work, a novel approach for automatic generation of rescheduling 
knowledge using Relational Reinforcement Learning (RRL) is presented. 
Relational representations of schedule states and repair operators enable to 
encode in a compact way and use in real-time rescheduling knowledge learned 
through intensive simulations of state transitions. An industrial example where 
a current schedule must be repaired following the arrival of a new order is 
discussed using a prototype application –SmartGantt®- for interactive 
rescheduling in a reactive way. SmartGantt® demonstrates the advantages of 
resorting to RRL and abstract states for real-time rescheduling. A small number 
of training episodes are required to define a repair policy which can handle on 
the fly events such as order insertion, resource break-down, raw material delay 
or shortage and rush order arrivals using a sequence of  operators to achieve a 
selected goal.  

Keywords: Learning, Rescheduling, Relational modeling, agile manufacturing. 

1   Introduction 

The scheduling task can be described as assigning a set of activities to a limited 
number of resources in a consistent manner over time, so as to avoid violations of the 
restrictions associated with the problem, such as limited resources capacity, due dates, 
or precedence relations between activities, while a determined set of objectives is 
optimized [1]. 

Although this problem has been extensively studied, most of the existing works 
addressing schedule optimization are based on the assumptions of complete 
information and a static and fully deterministic environment [2]. A pervasive 
assumption in this conception has been that the optimized schedule, once released to 
the production floor, can be executed as planned. Nevertheless, a schedule is typically 
subject to the intrinsic variability of a process environment where difficult-to-predict 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 76



events occur as soon as it is released for execution, like equipment failures, quality 
tests demanding reprocessing operations, arrival of rush orders and delays in material 
inputs from previous operations, and continued advent of new orders, which increase 
the associated uncertainty in real time schedule execution. So, elaborated plans fast 
become obsolete, and they need to be updated constantly [3]. Hence, the inability of 
most scheduling literature to address the general issue of uncertainty and variability is 
often cited as a major reason for the lack of influence of current research in the field 
on industrial practice [4]. 

Real-time rescheduling (or reactive scheduling) is the knowledge-intensive activity 
of updating an existing schedule in response to disturbances and unplanned events [1], 
and is a key issue in disruption management. Existing approaches for generating 
(near) optimal schedules for real-world production systems, typically require 
significantly large amounts of time, due to the inherent computational complexity of 
this type of problems, and the uncertainty related to the environment dynamics, so the 
cost for searching an optimal schedule is prohibitively high. If repair decisions need 
to be made in real-time, then fast rescheduling is mandatory to account for unplanned 
and abnormal events by generating satisfying schedules rather than optimal ones [1]  

Therefore, the capability of generating and representing knowledge about 
heuristics for repair-based scheduling is a key issue in any rescheduling strategy, and 
many works have been developed exploiting peculiarities of the specific problem 
structure ([5],[6],[7],[8]), but the tricky issue is that resorting to a feature-based 
representation of schedule state is very inefficient, and generalization to unseen states 
is highly unreliable, as well as the learning performed and the acquired knowledge are 
difficult to transfer to unseen scheduling domains. In contrast, humans can succeed in 
rescheduling thousands of tasks and resources by increasingly learning a repair 
strategy using a natural abstraction of a schedule: a number of objects (tasks and 
resources) with attributes and relations (precedence, synchronization, etc.) among 
them. First-order relational representations enable the exploitation of the existence of 
domain objects, of relations (or, properties) over these objects, and enable the use of 
quantification over objectives (goals), action effects and properties of states. 

In this work, a novel real-time rescheduling prototype application called 
SmartGantt®, which resorts to a relational (deictic) representation of (abstract) 
schedule states and repair operators with RRL, is presented. To learn a near-optimal 
policy using simulations [9], implements an interactive scheduling repair bearing in 
mind different goals and scenarios. To this aim, domain-specific heuristics for 
scheduling repair are developed using two general-purpose algorithms already 
available: TILDE and TG ([10],[11]). 

2   SmartGantt® repair -based (re)scheduling   

Fig. 1 depicts the repair-based architecture implemented by SmartGantt®, where 
search control knowledge about repair operator optimal selection is acquired through 
reinforcements using a schedule state simulator.  In the simulation environment, an 
instance of the schedule is interactively modified by the system using a sequence of 
repair operators until a repair goal is achieved or the impossibility of repairing the 
schedule is accepted. In each learning episode , SmartGantt®, receives information 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 77



from the schedule situation or state s and then selects a repair operator a to be applied 
to the current schedule, resulting in a new one. The evaluation of resulting quality of a 
schedule after the repair operator has been applied is performed by SmartGantt® 
using the simulation environment, via an objective or reward function r(s). The 
learning system then updates its action-value function Q(s,a) that estimates the value 
or utility of resorting to the chosen repair operator a in a given schedule state s. Such 
an update is made using a reinforcement learning algorithm [12] such as the well-
known Q-learning rule. By accumulating enough experiences over many simulated 
transitions, SmartGantt® is able to learn an optimal policy for choosing the best 
repair operator at each schedule state. The main issue for reinforcement learning is 
then how schedules states and repair strategies must be represented for knowledge 
acquisition and iterative revision. The main benefit of applying reinforcement 
learning techniques such as Q-learning to search control knowledge for improving 
quality and efficiency of real-time rescheduling is that there are no extra burden on 
domain experts, online adaptation to a dynamic environment, and possibility of 
incorporating abstractions to deal with large state spaces. 

 
.  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Repair Based Rescheduling 
 
For repairing a schedule, SmartGantt®,  is given a repair-based goal function 

goal:S → {true, false}defining which states in the schedule are target states, e. g. 
states where total tardiness is less than or equal to 1 working day. The objective of 
any schedule repair task can be phrased as: given a starting state for the schedule s1, 
find a sequence of repair operators a 1, a 2,…,a n with a i∈ A such that 
goal(δ(…δ(s1,a1)…,an

Also, a reward function is used as guideline to learn a repair policy from 
reinforcements based on simulations [13]. Resorting to the reward function and 
simulations, the optimal policy: a

)) = true where δ is the transition function which is unknown 
to the learning agent. 

i =  π∗(si) can be approximated using a regression 
tree ([14],[15]), and can be used to compute the shortest action-sequence to reach a 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 78



repaired scheduled, improving responsiveness at the shop-floor to handle unplanned 
events and meaningful disturbances at the shop-floor [23].  

3   Relational Reinforcement Learning 

Relational Reinforcement Learning (RRL) is often formulated in the formalism of 
Relational Markov Decision Processes (RMDP), which are an extension from 
standard MDPs based on relational representations in which states correspond to 
Herbrand interpretations [10], and offers many possibilities for abstraction due to the 
structured form of ground atoms in the states and actions. 

Thus, RRL algorithms are concerned with reinforcement learning in domains that 
exhibit structural properties and in which different kinds of related objects such as 
tasks and resources exist ([11],[14]). This is usually characterized by a large and 
possibly unbounded number of different states and actions as the case of planning and 
scheduling. Rather than using an explicit state−action Q-table like traditional 
reinforcement learning algorithms, RRL stores the Q-values in a logical regression 
tree [15]. The relational version of the Q-learning algorithm is shown in Fig. 2.  

The computational implementation of the RRL algorithm has to deal successfully 
with the relational format for (states, actions)-pairs in which the examples are 
represented, the fact that the learner is given a continuous stream of (state, action, q-
value)-triplets and has to predict q-values for (state, action)-pairs during learning.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 2. A RRL algorithm for learning to repair schedules through intensive simulations. 
 

Because of the relational representation of states and actions and the inductive 
logic programming component of the RRL algorithm, there must exist some body of 
background knowledge which is generally true for the entire domain to facilitate 
induction. After the Q-function hypothesis has been initialized, the RRL algorithm 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 79



starts running learning episodes ([12],[10]). During each learning episode, all the 
encountered states and the selected actions are stored, together with the rewards 
related to each encountered (state, action)-pair. At the end of each episode, when the 
system encounters a goal state, it uses reward back-propagation and the current Q-
function approximation to compute and update the corresponding Q-value 
approximation for each encountered (state, action)-pair in the episode. The algorithm 
then presents the set of (state, action, qvalue)-triplets to a relational regression engine, 
which will use this set of Examples to update the current regression tree of the Q-
function, and then the algorithm continues executing the next learning episode. 

Several incremental relational regression techniques have been developed to meet 
the requirements for RRL implementation: an incremental relational tree learner TG 
[16], an instance based learner [17], a kernel-based method ([18],[20]) and a 
combination of a decision tree learner with an instance based learner [19].   
TG is the most popular  relational regression algorithm that has been developed for 
policy representation and state abstraction in logical and relational learning 
([10],[11],[14]), and is used by SmartGantt® for accumulating simulated experience 
in a compact way, yet  readily available decision-making rule for generating a  
sequence of  repair operators available at each schedule state s. The difference with 
traditional decision tree learners is in the generation of the tests to be incorporated in 
the nodes, due to the symbolic nature of representation used for states of schedule and 
repair operators. For this, the algorithm employs a refinement operator ρ that works 
under θ-subsumption, based on information gain [11]. 

3.1   Relational (deictic) Representation of Schedule States and Repair  Operators 

The problems of attribute-value representations that we have described in previous 
sections, are solved by SmartGantt® looking at relational (or first-order) deictic 
representations. Such a relation, presupposes a language to express sets of relational 
facts that describe a schedule state and available repair operators  in a compact and 
comprised way; each state can be characterized by only those facts that hold in it, that 
are obtained applying a hold(State) function. 

Such application, implements the concept of “abstracting (learning) from 
interpretations” [21]. In this notation, each (state, action) pair will be represented as a 
set of relational facts, which is called a relational interpretation. Additionally, it is 
proposed here a deictic approach to define   relational schedule states and repair 
operators as a much powerful alternative used by SmartGantt®, which deals with the 
varying number of tasks in the planning world by defining a focal point for 
referencing objects in the schedule state. 

To characterize transitions in the schedule state due to repair actions, a deictic 
representation resorts to constructs such as: i) The first task in the new order, ii) The 
next task to be processed in the reactor, and iii) Tasks related to the last order. 

Fig. 3 shows a relational (deictic) representation of a schedule. Note that the 
number of facts in an example is not fixed, and that the order of the facts is arbitrary. 
For example, the structure of precedes(task1,task2) shares the parameter object 
“task2” with the fact precedes(task2,task3). This type of structural pattern can be 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 80



exploited by SmartGantt for compact abstractions, something which is not possible in 
a propositional representation of schedule states.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Relational representation of a schedule state 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Deictic Repair Operators 
 
In a deictic representation, both scheduling states and repair operators (actions) are 

defined in relation to a given focal point (i.e., a task) as shown in Fig. 4. These local 
repair operators move the position of a task alone, however due to the ripple effects 
caused by tight resource-sharing constraints other tasks may need to be moved as well 
which is often not desirable. Whenever the goal-state for the schedule cannot be 
achieved using primitive repair operators more elaborated macro-operators can be 
used to implement a combination of basic repair operators such as task-swapping, 
batch-split or batch-merge until a goal state in the repaired schedule (e.g. order 
insertion without delaying other orders) is achieved. 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 81



3.2   Inducing Abstract Schedule States and Repair  Policy Using Logical 
Decision Trees 

As we have seen previously, relational representations of the schedule states and 
repair operators are symbolic in nature; so, the main challenge in this type of domains 
is to exploit the inherent structure of schedule states, as well as the structure shared 
among several schedules or parts of them using variables to range over constants, and 
Background Knowledge (BK) with syntactic bias in the form of types and modes, 
which consists of the definitions of general predicates that can be used in the induced 
hypotheses, for generalization, abstraction, and knowledge transferring purposes. 

To this aim, and to reduce the state space and accelerate learning, SmartGantt® 
performs an induction process over the schedule states and repair operators, obtaining 
a set of Abstract States (AS), which are conjunctions ≡ 1∧. . .∧ m of logical atoms, 
(e.g., a logical query).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Part of the Abstract State Value Function for the minimize tardiness goal. 
 

The use of variables, as shown in Fig. 5 in the Root Query, admits abstracting over 
specific domain objects as well. The application starts with a first-order logical 
alphabet containing predicates, constants and variables. Thus, an AS is basically a 
logical sentence, specifying general properties of several states visited during the 
learning through simulated transitions. An example can be the AS depicted in Fig. 5, 
where blue region covers the set of states where Total Tardiness is less than 59.44 h., 
the Focal Task A precedes a certain task L, and has less tardiness than the last, the 
total Work in Process is less than 41.92 h., and the repair operator that has been 
applied is JumpAltRight. Note that the real task denoted by A must be the same in 
all cases where such variable appears. So, an AS does not depend on specific objects 
like task1, extruder1, but refers to them through variables. 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 82



Fig. 5 shows that the action-value function relies on a set of abstract states, which 
together, encode the kind of rescheduling knowledge learned through intensive 
simulation in a compact and comprised way, which can be used in real time to repair 
plans that have been affected by disruptive events. Furthermore, an AS definition is 
independent of the kind of disruptive event: it only depends on the desired goal for the 
repaired schedule state. As a result, it is no important to determinate the event type 
that has driven the schedule to the current state, to find a sequence of repair operators  
to achieve a goal for the resulting schedule. Using this powerful abstraction, the states 
are characterized by a set of properties, rather than a particular way, and the repair 
policy express the relative position of the learning system with respect to other objects 
in the schedule domain, which also allows it to transfer the learned policies to 
different problems were the same relations apply, without any further learning. An 
abstract state S, covers a ground state s iff s |=  S, which is decided by SmartGantt® 
using θ-subsumption [17].  

The task of inducing the set of abstract states is carried on by SmartGantt® using 
the result of applying TG, in combination with the algorithm depicted in Fig. 6 that 
was implemented in Prolog.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6. Algorithm that determines the Abstract State corresponding to a ground state. 
 

Encoded rescheduling knowledge based on abstract states is used each time the 
prototype needs to consult the Q-value of a certain state-repair operator pair (s,a). To 
this aim, using the collection of rules derived by TG, it stores the body (set of logical 
sub-objectives that define an abstract state) of each rule, in a separate collection of 
Abstract States (ABS). Then, it loads (consults) the available Background 
Knowledge, and ABS; for each element in ABS, it checks the θ-subsumption between 
the particular ground state-repair operator (s,a), and the abstract state. If it succeeds, 
then the algorithm returns the corresponding abstract state. 

In the RRL approach just presented, the learner generates the definition of the Q-
function from a set of examples in the form of abstract state-action-value tuples, and 
dynamically partitions the set of possible states (different regions in Fig. 5). 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 83



4   SmartGantt® Prototype 

The prototype application has been implemented in Visual Basic.NET 2005 
Development Framework 2.0 SP2 and SWI Prolog 5.6.61 running under Windows 
Vista. TILDE and TG modules from The ACE Datamining System developed by 
the Machine Learning group at the University of Leuven have been used. The overall 
architecture of the prototype is shown in Fig. 7, and Fig. 8 shows its graphical user 
interface.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.  Graphical schema of the SmartGantt architecture 
 

The prototype admits two modes of use: training and consult. The first task to be 
performed is training, in which the system learns to repair schedules through 
simulated transitions, and encodes the Q-function so that it can then apply this 
knowledge in the consult phase. As an example, the disruptive event that the system 
can handle is the arrival of a new order to the production system is considered. 

Before starting the training phase, using the graphical interface, the user must 
define the value of the simulation and training parameters, related to: 
• Initial schedule conditions: to the simulation purposes, is necessary to determine 

the minimum and maximum values associated to the size and due date that the 
automatically generated orders can adopt, as well as the (variable) number of 
orders that may be present in the system at the beginning of the training episode.  

• Learning Parameters: the user must adjust the RRL associated parameters, like 
γ, ε, and α. 

• Goal State Definition: the last parameter that has to be set before starting 
simulation, is the desired goal in case that the disruptive event is the arrival of a 
new order to the production system. Checking the option “Try Reinsertion”, 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 84



enables the agent to change the due date of the new order to define the minimum 
value that this attribute should take so the order can be inserted in the actual 
schedule conditions. This feature is very import for due date negotiation purposes, 
in the case that the order cannot be inserted with its initial requirements.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. SmartGantt Graphical User Interface 
 

Training a rescheduling agent can be carried out having three possible goals in mind, 
which can be selected through an option list: 

• Tardiness Optimization: the repaired schedule has less tardiness than the initial 
one. 

• Normal Insertion: tries to minimize the number of moves, and the reward r is 
assigned as follows: r=(n0-nc)/n0, if goal(st)= true and r=0, if goal(st)=false. n0 is 
the total number of orders, and nc

• Quotient Optimization: tries to optimize the tardiness T and the number of changes 
made to the original schedule N, as follows: r= (TInitial-TFinal)/N. N is the number 
of required steps for achieving the goal state. 

 is the number of orders that have changed their 
position with respect to the original schedule. 

 
In all cases, each option means to change the conditions that define the goal state 

and the way in which the reward is assigned to the applied operators. At the beginning 
of each training episode, the prototype generates a set of orders with their 
corresponding attributes, bounded over allowable ranges defined interactively. To 
generate the initial schedule state s0, these orders are randomly assigned to one of the 
available resources. Later on, the attributes of the order to be inserted –without 
increasing the total tardiness in the initial schedule- are generated, and it is assigned 
arbitrarily to one of the extruders. The learning episode progresses by applying a 
sequence of repair operators until the goal state is reached. 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 85



Based on the suitable initialization of the Q-function, the RRL algorithm starts to 
experiment with simulated learning episodes which allows updating its knowledge 
base using the standard Q-Learning algorithm. In each training episode, every found 
state-action pair is stored with the associated reward. At the end of the episode, when 
the agent has reached the goal state, the Q-values of each state-action pair visited are 
updated using back-propagation. So, the algorithm gives the set of tuples (state, 
action, Q) to a relational regression engine, employing this set of examples to update 
the regression tree that represents the Q-function. Then, the algorithm continues 
executing the next episode. In the generated tree, different nodes are basically Prolog 
queries. In consequence, to find a Q-value, a Prolog program based on the tree is built 
on-line. After that, when the query (state-action) is executed, this engine will return 
the desired value, or the best repair operator to be applied for a given schedule state. 
The estimated Q-value will depend on the quality of the generated tree, which rely 
upon defined rules of the background knowledge, which is valid all over the domain. 

The relational regression tree contains (in relational format) the repair policy 
learned from the current and previous episodes. The mentioned queries are actually 
processed by the Prolog wrappers ConsultBestAction.exe and ConsultQ.exe, which 
made up a transparent interface between the .NET agent and the relational repair 
policy. Also, the RRTL module includes the functionality for discretizing continuous 
variables such as Total Tardiness and Average Tardiness in non-uniform real-valued 
intervals so as to make the generated rules useful for Prolog wrappers. The algorithm 
depicted in Fig. 6 is implemented in a separated library that uses the functionality of 
Prolog.NET to perform the induction of abstract states. 

Table 1. General component description of the rescheduling prototype application. 

Component Description 
Environment Evaluates the pair state-repair operator, and returns the 

reward. Reports if a state is a goal state. 
Application Coordinates the simulation process and presents the results 

graphically. 
.Net Agent Performs the repair operator application, consults the Q 

value and abstract states, saves the states in relational 
format, and varies order features to make it insertable, if is 
not. 

Examples Contains the states in relational format, and is used to 
generate the RRT. 

RRT Learner Regression Tree induction algorithm. 
Background Knowledge Set of rules that defines general knowledge of the domain. 
Repair Policy Learned repair policy, reflected in the form of Prolog rules. 
Act. Abs. State Actual Abstract State in relational format 
Act. Abs. State-Repair 
Operator 

Actual Abstract State and Repair Operator applied over it, 
in relational format. 

Consult Best Repair 
Operator 

Wrapper Prolog that returns the best repair operator 
available, in a certain Abstract State-Goal. 

Consult Q Value Wrapper Prolog that returns the Q value for a certain 
combination of Abstract State-Repair Operator-Goal  

Abstract State Inductor Wrapper Prolog that returns the corresponding abstract 
state for a particular concrete state. 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 86



 
In the .NET prototype, different classes are used to model Agent, Environment, 

Actions and Policy using the files Policy.pl, ActState.pl, ActStateAction.pl and 
BackgroundKnowledge.pl. Finally, the .NET agent is fully equipped to handle 
situations where the order cannot be inserted in the initial schedule. To this aim, the 
agent may modify order attributes such as date or size so as to insert the order. The 
prototype allows the user to interactively revise and accept/reject changes made to 
order attributes so as to insert it in the initial schedule without increasing the Total 
Tardiness of the resulting schedule.  

The prototype can show graphically the evolution of the insertion (and the 
sequential application of repair operators over the initial schedule) and learning 
results. 

Other information available to the user is the evolution of the steps (changes made 
to original schedule) per episode to reach the goal state, total reward obtained through 
the training phase, average steps per episode, and average reward, which is updated in 
real-time. 

The second operation mode of the prototype is “consult”, that can be used once the 
agent has learned the repair policy. To this aim, the user can define a new schedule 
manually using the graphical interface, or generate it on-line in random way, to verify 
the behavior of learned policy.  

5   Example 

An example problem proposed by Musier and Evans in [22] is considered to illustrate 
the use of repair operators for batch plant rescheduling. The plant is made up of 3 
semi-continuous extruders that process customer orders for four products. 

Each extruder has distinctive features, so that not all the extruders can process all 
products. Additionally, processing rates depend on both the resource and the product 
being processed. For resource set-up, times required to resource cleaning have been 
introduced, based on the precedence relationship between types of elaborated 
products. Processing rates and cleanout requirements are detailed in [23]. Order 
attributes correspond to product type, due date and size. In this section, this example 
is used to illustrate concepts like relational definition of schedule states and repair 
operators, global and focal (local) variables used in the relational model, and the 
overall process of repairing a schedule bearing in mind not increase the total tardiness 
when a new order needs to be inserted. In learning to insert an order the situation 
before the sequence of repair operations is applied is described by: i) arrival of an 
order with given attributes that should be inserted in a randomly generated schedule 
state, and ii) the arriving order attributes are also randomly chosen. This way of 
generating both the schedule and the new order exposes the agent to totally dissimilar 
situations learning a repair policy to successfully face the environment uncertainty.  

So, the initial schedule is generated in terms of several values, which can be 
changed using the graphical interface of the prototype, such as number of orders, 
order composition (product types), order size and due dates. 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 87



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 9. Example of applying the optimal sequence of repair operators 
 
The focal and global variables used in this example are detailed in [23], combined 

with a relational representation of the schedule that has been showed in previous 
section. To illustrate the advantages of RRL in real-time rescheduling, we consider 
the specific situation where there exist 14 orders already scheduled in the plant and a 
new order #15 must be inserted so that the Total Tardiness (TT) in the schedule is 
minimized. In each episode, a random schedule state for orders #1 through #14 is 
generated, and a random insertion attempted for the new order (whose attributes are 
also randomly chosen), which in turn serves as the focal point for defining repair 
operators. The goal state for the repaired schedule is stated in terms of the TT: the 
order #15 must be inserted without increasing the TT present in the system.  

Background knowledge such as “the number of orders scheduled for extruder #3 is 
larger than the number for extruder #2” is provided to speed up learning in the 
relational domain. 

After 60 training episodes, only 7 repair steps are required, on average, to insert the 
15th order. Fig. 13 provides an example of applying the optimal sequence of repair 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 88



operators from the schedule in Fig.13 (a). Before the 15th order has been included, the 
Total Tardiness is 37.60 h. Once the arriving order (in white) has been inserted, the 
Total Tardiness has been increased to 45.52 h; orange tasks are used to indicate 
cleaning operations. Based on the learned repair policy, several repair operators are 
applied, until the goal state is reached with a Total Tardiness of 29.60 h., which is 
even lower than the TT in the initial schedule before the 15th order was inserted.  

6   Concluding Remarks 

A novel approach for simulation-based development of a relational policy for 
automatic repair in real time of schedules using reinforcement learning and a 
prototype application, have been proposed. The policy allows generation of a 
sequence of deictic (local) repair operators to achieve rescheduling goals to handle 
abnormal and unplanned events, such as inserting an arriving order with minimum 
tardiness based on relational (deictic) representation of abstract schedule states, and 
repair operators. Representing schedule states using a relational abstraction is a very 
natural choice to mimic the human ability to deal with rescheduling problems, where 
relations between objects and focal points for defining repair strategies are typically 
used. These repair policies relies on abstract states, which are induced with general 
purposes, allowing the use of a compact representation of the problem which is are 
independent of the type of event that has been used to generate the disruption. 
Moreover, using relational modeling for learning from simulated examples is a very 
appealing approach to compile a vast amount of knowledge about rescheduling 
policies, where different types of abnormal events (order insertion, extruder failure, 
rush orders, reprocessing operations, etc.) can be generated separately through 
intensive simulation and then compiled in the relational regression tree for the repair 
policy, regardless of the event used to generate the examples (triplets).  
The main difference of the proposed approach with other reactive scheduling 
techniques is that rescheduling knowledge is generated based on plant-specific 
structure and events. Also, it can easily accommodate shop-floor decision rules to 
advantage. Moreover, in SmartGantt each response to a disruptive event is goal-
oriented and aims to find a “satisfactory” solution whereas in existing literature on 
reactive scheduling the search for an optimal solution is pervasive. 
Current work is focused on extending SmartGantt  to an industrial case study with 
+100 products and several production tasks (formulation, testing, filling, etc.) with 
intermediate storage and waiting times. Schedule states for multi-stage configurations 
and WIP constraints are rather straightforward in RRL by resorting to the batches or 
orders as the focal points for deictic representations. 

References 

1. Vieira, G., Herrmann, J. Lin, E.:  Rescheduling Manufacturing Systems: a Framework of 
Strategies, Policies and Methods.  J. of Scheduling, 6, 39 (2003) 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 89



2. Méndez, C., Cerdá, J., Harjunkoski, I., Grossmann, I., Fahl, M.: State-of-the-art Review of 
Optimization Methods for Short-term Scheduling of Batch Processes. Computers and 
Chemical Engineering, 30, 913 (2006) 

3. Henning, G., Cerda, J.: Knowledge-based Predictive and Reactive Scheduling in Industrial 
Environments. Computers and Chemical Engineering, 24, 2315 (2000) 

4. Henning, G.: Production Scheduling in the Process Industries: Current Trends, Emerging 
Challenges and Opportunities. Computer-Aided Chemical Engineering, 27,  23 (2009) 

5. Adhitya, A., Srinivasan, R., Karimi, I. A.: Heuristic Rescheduling of Crude Oil Operations to 
Manage Abnormal Supply Chain Events. AIChE J., 53,  No. 2, p. 397 (2007) 

6. Miyashita, K., Sycara, K.: CABINS: a Framework of Knowledge Acquisition and Iterative 
Revision for Schedule Improvement and Iterative Repair. Artificial Intelligence, 76, 377 
(1994) 

7. Zweben, M., Davis, E., Doun, B., Deale, M.: Iterative Repair of Scheduling and 
Rescheduling. IEEE. Trans. Syst. Man Cybern., 23,  1588 (1993) 

8. Miyashita, K.: Learning Scheduling Control through Reinforcements, International. 
Transactions in Operational Research (Pergamon Press), 7, 125 (2000) 

9. Croonenborghs, T.: Model-assisted Approaches to Relational Reinforcement Learning. Ph.D. 
dissertation, Department of Computer Science,  K. U. Leuven, Leuven, Belgium (2009) 

10. Džeroski, S., De Raedt, L., Driessens, K..: Relational Reinforcement Learning. Machine 
Learning, 43, No. 1/2, p. 7 (2001) 

11. De Raedt, L.: Logical and Relational Learning. Springer-Verlag, Berlin (2008) 
12. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Boston, (1998) 
13. Martinez, E.: Solving Batch Process Scheduling/Planning Tasks using Reinforcement 

Learning, Computers and Chemical Engineering, 23, S527 (1999) 
14. Van Otterlo, M.: The Logic of Adaptive Behavior: Knowledge Representation and 

Algorithms for Adaptive Sequential Decision Making Under Uncertainty in First-order and 
Relational Domains, IOS Press, Amsterdam (2009) 

15. Blockeel, H., De Raedt, L.: Top-down Induction of First Order Logical Decision Trees. 
Artificial Intelligence, 101, No. 1/2, p. 285 (1998) 

16. Driessens, K., Ramon, J., Blockeel, H.: Speeding up Relational Reinforcement Learning 
through the use of an Incremental First Order Decision Tree Learner. In: De Raedt, L. and 
Flach, P. (eds.) 13th European Conference on Machine Learning, vol. 2167, 97, Springer, 
Heidelberg (2001) 

17. Driessens, K., Ramon, J.: Relational Instance Based Regression for Relational 
Reinforcement Learning. In: 20th International Conference on Machine Learning, 123, 
AAAI Press, Washington (2003) 

18. Driessens, K., Ramon, J., Gärtner, T.: Graph Kernels and Gaussian Processes for Relational 
Reinforcement Learning. Machine Learning, 64, No. 1/3, 91 (2006) 

19. Driessens, K., Džeroski, S.: Integrating Guidance into Relational Reinforcement Learning. 
Machine Learning, 57, 271 (2004) 

20. Gärtner, T.: Kernels for Structured Data. Series in Machine Perception and Artificial 
Intelligence, Vol. 72, World Scientific Publishing, Singapore (2008) 

21. Blockeel, H., De Raedt, L., Jacobs, N., Demoen, B.: Scaling up Inductive Logic 
Programming by Learning from Interpretations. Data Mining and Knowledge Discovery vol. 
3(1) pp. 59-93 (1999) 

22. Musier, R., Evans, L.: An Approximate Method for the Production Scheduling of Industrial 
Batch Processes with Parallel Units. Computers and Chemical Engineering, 13, 229 (1989) 

23. Palombarini, J., Martínez, E.: Learning to Repair Plans and Schedules using a Relational 
(deictic) Representation. Brazilian Journal of Chemical Engineering vol. 27, 03, pp. 413- 
427 (2010) 

40JAIIO - JII 2011 - ISSN: 1850-2849 - Página 90




