
Effective Use of Multicore Clusters
in Parallel Cellular Automata

A. Marcela Printista12 and Fernando Saez1

1 Laboratorio de Investigación y Desarrollo en Inteligencia Computacional
2 Universidad Nacional de San Luis

3 CONICET CCT-San Luis-Argentina
{mprinti, bfsaez}@unsl.edu.ar

Abstract. Cellular automata provide an abstract model of parallel computation
that can be effectively used for modeling and simulation of complex phenomena
and systems. We start from a template designed to facilitate fasterD-dimensional
cellular automata application development. The key for the use of the template
is to achieve an efficient implementation, irrespective of the application specific
details. In the parallel implementation on a cluster was important to consider
issues such as task and data decomposition. With multicore clusters, new prob-
lems have emerged. The increasing numbers of cores per node, caches and shared
memory inside the nodes, has led to the formation of a new hierarchy of access
to processors. In this work we discuss and evaluate strategies that will be impor-
tant in optimizing prototype to run on multicore cluster. The underlying idea in
our proposal is the establishment of a relation among parallel processes based
on the communication topology that arises in the implementation of task divi-
sion functions. We propose that this relation can efficiently map on the multicore
cluster topology. We introduce a new mapping strategy that can obtain benefit in
the performance by adapting its communication pattern to the hardware affini-
ties among processes allocated in different cores. We apply our approach to a
two-dimensional application achieving sensible execution time reduction.

Keywords: Parallel Programming, Cellular Automata, Multicore Nodes, Map-
ping Strategy

1 Introduction

Multicore processors have emerged and are currently the mainstream of general purpose
computing. Quad-core processors are currently commonplace and core count by chip
is expected to increase drastically in the forthcoming years. In HPC, these processors
have been used as building blocks for cluster of multiple sizes, by grouping together
a variable number of nodes (each containing a few multicore processors) through a
commodity interconnection fabric such as Gigabit Ethernet. A real challenge for parallel
applications is to exploit such architecture at their potential. In order to achieve the best
performance, many new factors must be considered and studied.

MPI programming model implicitly assumes the message passing as interprocess
communication mechanism, so any existing MPI code can be employed without changes

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 76

for running in a multicore cluster. The MPI conceptual model considers a set of pro-
cesses which communicate with each other, regardless of whether they will be mapped
to multiple cores sharing memory within a single node.

But, the technology in study involves to consider the different kind of communica-
tions among processes, depending on whether they are running on different cores within
the same node or different nodes. Chai et al. [3] presented communication schemes on
multicore clusters, where intra-chip, intra-node and inter-node are described. The speed
of communication among cores in a multicore processor chip (intra-chip) varies with
core selection, since some cores in a processor chip share certain levels of cache and
others do not. Consequently, intra-chip interprocess communication can be faster if the
processes are running in cores with shared caches than otherwise. This asymmetry in
communication speed may be worse among cores on distinct processor chips in a clus-
ter node (intra-node) and is certainly worst if communicating cores belong to distinct
nodes of a cluster (inter-node).

As an alternative to the pure MPI model, Rabenseifner et al. [8] presented the avail-
able programming models on hybrid/hierarchical parallel platform. The authors outline
that to seem natural to employ a hybrid programming model which uses OpenMP [1]
for parallelization inside the node and MPI for message passing between nodes. It can
expect hybrid models to have positive effects on parallel performance. However, mis-
match problems arise because the main issue with getting good performance on hybrid
architectures is that none of the common programming models fits optimally to the
hierarchical hardware.

MPI library gives the programmer control over the decomposition task and the man-
agement of communication/synchronization among the parallel processes. Although
MPI does not include explicit mapping primitives, most of its implementations have a
static programming style. In this case, MPI support can avoid the mapping and schedul-
ing problems, however, the programmer’s task becomes more complex. Its unstructured
programming model based on explicit, individual communications among processors is
notoriously complicated and error-prone.

To reduce the software complexity without lowering the performance, an approach
exists to restrict the form in which the parallel computation can be expressed. This can
be done at different abstraction levels. The model provides programming constructs:
skeletons, that correspond directly to frequent parallel patterns. The programmer ex-
presses parallelism using a set of basic predefined forms with solution to the mapping
and restructuring problems.

Simulations based on Cellular automata are ideally suited for parallel computing
and consequently, researchers from diverse fields require support to design and imple-
ment parallel cellular algorithms that are portable, efficient, and expressive. Following
this approach, Saez et al. [5] implemented a versatile cellular automata skeleton and an
environment for its use. The skeleton is written inC and MPI and is accessed through
a call to the constructorCA_Call and its parameters list allows substantial flexibility,
which will bring benefits in different application domains. The skeleton enables us to
write CA algorithms in an easy way, hiding parallel programming difficulties while
supporting high performance.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 77

The goal of this paper is to describe the optimization techniques applied to aCA

skeleton that will be able to take advantage of a multicore environment. We will show
a performance improvement not due to modifications of the MPI implementation itself
but rather due to a relevant process placement.

The rest of the paper is organized as follows. Section 2 introduces a background
about cellular automata and the section 3 briefly describes some important aspect of
the parallel implementation ofCA skeleton. In this section some experimental results
of theCA Implementation on a Cluster are showed. Section 4 describes the multicore
environments and focuses in the process placement and mapping problems. Section 5
presents the comparative analysis of strategies and the conclusions are given. Finally,
the section 6 presents our current research activities.

2 Cellular Automata Background

Cellular automata are simple mathematical idealizations of natural systems. They con-
sist of aD−dimensional lattice of cells of uniform size connected with a particular
geometry, and where each cell can be in one of a finite number of states. The values
of the cells evolve in discrete time steps according to deterministic rules that specify
the value of each cell in terms of the values of neighboring cells and previous values.
Formally, a cellular automaton is defined as a4−tuple (LD, S, V, f) whereLD is a
D−dimensional lattice partitioned into cells,S is a finite set of states (|S| = v) , V is a
finite set of neighborhood indexes, andδ : Sv → S is a transition function.

Below we summarize the most important characteristics that define the behavior of
CA:

Initial State: The initial configuration determines the dimensions of the lattice, the
geometry of the lattice, and the state of each cell at the initial stage.

State: The basic element ofCA is the cell. Each cell in the regular spatial lattice, can
take any of a finite number of discrete state values. In the simplest case, each cell
can have the value0 or 1. In the more complex case, the cells take more values. It
is even possible to have each cell with a complex structure with multiples values.

Neighborhood: For each cell of the automaton, there are a set of cells called neigh-
borhood (usually including the cell itself). A characteristic ofCA is that all cells
have the same neighborhood structure, even the cells at the boundary of a lattice
have neighboring cells that could be outside the domain. Traditionally,border cells
are assumed to be connected to the cells on the opposite boundary (that is, for one
dimension, the right most cell is the neighbor of the left most one and vice versa).

Transition function: The set of rules that define how the state of each cell changes on
the basis of its current state and the states of its neighbor cells. In a standardCA,
all cells are updated synchronously.

3 High Performance Simulation for CA Models

From a computational point of view,CA are basically a computer algorithm that is
discrete in space and time and operates on a lattice of cells. The Fig. 1 shows a sim-
ple algorithm that solves a two-dimensional generic cellular automaton. The algorithm

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 78

takes as input a two-dimensional lattice of (N× N) and initializes the structure with
some initial configuration. The simulation involves an iterative relaxation process. This
process is represented in the algorithm with a iteration ofsteps steps. In each time step
t, the algorithm updates each cell in the lattice. The next state of an elementst+1(i, j)
is a function of its current state and the values of its neighbors. The relaxation process
ends aftersteps iterations.

1 CelAuto(Lattice,steps)
2 init(Lattice)
3 for t = 1 to steps
4 for i = 1 to N
5 for j = 1 to N
6 nextState(Lattice,i,j)

Fig. 1. SequentialCA approach

Cellular automata parallel systems allow to user exploit the inherent parallelism of
cellular automata to support the efficient simulation of complex systems that can be
modeled by a very large number of simple elements with local interaction only. In fact,
it is possible to exploit the data parallelism intrinsic to theCA programming model
coming from the possibility to execute the transition function on different sublattices
due to the local nature of cell interactions. The cellular space of the automaton is rep-
resented by an array ofD dimensions (D-lattice), which containsND objects called
cells. Inside of a cluster based on distributed memory system, the parallel execution
usingP processors (denotedp0, p1, ...pP−1) is performed by applying the transition
function simultaneously toP sublattices in aSPMD way.

The skeleton has a component that implements theCA parallel paradigm and frees
the user to consider details involved in high performance computing. It also has a com-
ponent specific to theCA application that implements the transition function. In this
case, the rules are described by a function built by the user.

As a first task of implementation it is necessary to find a division criterion to provide
P sublattices of the automaton. The underlying idea for the implementation of lattice
division functions is the establishment of a relation amongP processes. The structure
of divisions produced by the proposed scheme and the partnership relation established
among processes give place to communication patterns that are topologically similar to
aMesh. This partnership is responsible of the assimilation the communication topol-
ogy of aCA.

If D
√
P is a natural number andN is multiple of P , then aD-lattice can be di-

vided inP sublattices given place to aD-dimensional mesh whereP determines the
number of divisions produced on the lattice andD defines the dimensionality of the
communication Mesh.

Applying different decompositions for the sameD-dimensional lattice, different
D-dimensional meshes (1 ≤ D ≤ D) may be possible, where the dimensionality of

the resulting mesh will be:D
√
P

(D−D+1)

︸ ︷︷ ︸

d1

× D
√
P

︸︷︷︸

d2

×... × D
√
P

︸︷︷︸

dD

(for example, for a CA

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 79

involving a three-dimensional lattice, one-, two-, and three-dimensional decompositions
are possible).

Once the data are divided, the skeleton implementation assigns each sublattice to
a processor and lets the nodes update them simultaneously. We are developing MPI
application, so, the number of ranks is the same as the number of nodes. A static map-
ping between the MPI processes and the processors is computed before launching the
CA application. This placement will not need to be modified during the application
execution.

Independently of the topology, each processor will be responsible of a sublattice,

which means the evolution of
ND

P
cells. No matter what the simulation problem is

attacked, a cell changes its current value through a set of rules that define its next state
depending on its current value and the value of its neighboring cells.

If a cell and its neighbors are in the same node, the update is easy. On the other
hand, when nodes want to update the border cells, they must request the values of the
neighboring cells on other nodes. The solution to this problem is to let two neighboring
lattices overlap by one row or column vector. After a node updates its interior elements,
it exchanges a pair of vectors with each of the adjacent nodes. The overlapping vectors
are kept in the boundary elements of the sublattices. If a neighboring node does not
exist, a local boundary vector holds the corresponding boundary elements of the entire
lattice.

The implementation uses asynchronous communications to allow the simultaneous
advance in the exchange of the borders between neighboring processes in theD Mesh.
Once the communication phase is completed, each process can perform the computa-
tions on their cells. The iterative process is repeated as necessary.

3.1 Experimental Results of the CA Implementation on a Cluster

In this section, we present some results obtained by using the skeleton prototype pre-
viously described, which does not consider multicore facilities. As a starting point, we
propose to evaluate the performance of the described implementation, and then compare
it with the approaches proposed in the next sections.

The cluster used for the experiments was a32 Node IBM 3550, which is equipped
with two Dual-Core Intel(R) Xeon(R) 3.00GHz per node. Each node has 4MB L2 (2x2).
The nodes are interconnected by a Gigabit Switch.

TheCA_Call prototype was applied to resolve the numerical solution of Laplace’s
equation by lattice relaxation, which is representative of the class of two-dimensional
CA models we study. The problem considers Von Neumann neighborhood, which com-
prises the four cells (North/South/ East/West) orthogonally surrounding a central cell
on a two-dimensional lattice. The processes were distributed in a round robin fashion
among the32 quad-core nodes of the cluster.

For both partitioning schemes, the Fig. 2 shows the experiments calledn-1cwhere
Mesh 2x2 and Mesh 4 refer to 4 nodes and Mesh 4x4 and Mesh 16 refer to 16 nodes.
All nodes are usable by the MPI processes with the restriction that only a single MPI
process runs on a given node. With this scheme, the operating system chooses on which
core of the node a process is executed.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 80

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

256x256 512x512 1024x1024

tim
e

(s
ec

s)

lattice size

1 core per node
seq

4n-1c (Mesh 4)
16n-1c (Mesh 16)
4n-1c (Mesh 2x2)

16n-1c (Mesh 4x4)

Fig. 2. 1D and 2D Partitioning. The benchmark places only one MPI task per node to avoid
intra-node messaging

In the experiment4n-1c, we observed that independent of the value ofD, for the
same lattice size, the analyzed schemes agree sublattice size and number of cells that
must be exchanged. While in the experiment16n-1c, for a given lattice size, both
schemes agree on the number of cells to be computed, but in the case ofD = 1 is
double the number of cells required to be exchanged with its neighbors to allow parallel
processing of sublattices. The Table 1 shows more precisely the situation. In the column
communication size, the first term corresponds to the number of neighbors for each cell,
the second term is due to the ”send to & receive from” operations and the third term is
the size of the data to be transmitted. The first two terms are the number of messages
sent or received required for the processing of a sublattice.

Experiment D Number of cells Communication Size

4n-1c
1 (Mesh 4) (N/4) ∗N 2 ∗ (2 ∗ (N ∗ size(cell)))

2 (Mesh 2x2)(N/2) ∗ (N/2) 4 ∗ (2 ∗ (N/2 ∗ size(cell)))

16n-1c
1 (Mesh 16) (N/16) ∗ (N) 2 ∗ (2 ∗ (N ∗ size(cell)))
2 Mesh (4x4)(N/4) ∗ (N/4) 4 ∗ (2 ∗ (N/4 ∗ size(cell)))

Table 1. Impact of Sublattice Size and Communication Size in 1D and 2D meshes

In addition to overall execution time, we measured the computation times for each
lattice size. The Table 2 shows that using 4 processors (4n-1c), the impact of com-
putation time is very high, obtaining, for example, in the case of an automaton of one
million of cells a ratio of more than 90% of time involved in computation. As the lattice
size increases, a speedup close to ideal can be visualized in the Table 3.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 81

Lattice SizeD
4n-1c 16n-1c

Total Time Computation Total Time Computation

256x256
1 2,06 1,18 (57,33%) 1,16 0,36 (31,20%)
2 1,78 1,21 (68,07%) 0,91 0,36 (39,94%)

512x512
1 5,36 4,37 (81,62%) 2,44 1,30 (51,60%)
2 5,22 4,38 (83,95%) 2,31 1,21 (52,32%)

1024x1024
1 17,45 15,99 (91,68%) 5,89 4,35 (73,91%)
2 17,10 15,87 (92,81%) 7,08 4,35 (61,49)%

Table 2. Impact of Computation Time in 1D and 2D meshes

This configuration achieves to balance the degree of partitioning, the size of the
problem and the communications involved. While for the same partitioning schemes
running on 16 processors (16n-1c), the communication times begin to impact. Con-
sider the case 1024x1024. ForD = 1, 16 processes must exchange1024 cells with each
of its 2 neighbors in the mesh (East/West), while forD = 2, the 16 processes must ex-
change only256 cells with each of its 4 neighbors (North/South/East/West). However,
as can be derived from Table 2, the time reported in communications from the 2D par-
titioning is greater than the 1D. This is due to the significant increase in network traffic
that introduce neighborhood-based communications. When this happens, the speedup
is limited by the cost of communications and network latencies. This fact, give us some
possibilities for the development of the proposals presented below.

Lattice SizeD Mesh Size 4n-1cMesh Size 16n-1c

256x256
1 4 1,90 16 3,40
2 2x2 2,20 4x4 4,31

512x512
1 4 2,93 16 6,45
2 2x2 3,02 4x4 6,83

1024x1024
1 4 3,68 16 10,88
2 2x2 3,74 4x4 9,04

Table 3. Speedup

4 Multicore Environments

In this section, we describe some modifications to theCA implementation given in
section 3 in order to restructure the prototype code and exposing an abstracted view of
the multicore cluster to theCA applications developer.

4.1 MPI Process placement

In a multicore cluster based on distributed memory system, the parallel execution ofP

tasks, can be carried out by using several combinations between nodes and cores per

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 82

node. Considering a homogeneous hardware environment - with amaximum number
of nodesM and the same number of cores per nodeC- the node-core combination is
composed by:P = n ∗ c where1 ≤ n ≤ M and1 ≤ c ≤ C. This fact involves taking a
decision about what node-core combination delivers the best performance, through the
evaluation of the key features of the algorithm that can affect - positive or negatively -
the expected performance.

According to the previous issue, for theCA model implementation to exploit the
underlying hardware, the MPI processes have to be placed carefully on the cores of the
multicore cluster. Whilst MPI standard is architecture-independent, it is responsibility
of the each implementation to bridge the gap between the hardwares performance and
the applications.

Fortunately, recent MPI-2 implementations such as Open MPI [4] or MPICH2 [7]
are able to take advantage of multicore environment and offer a very satisfactory per-
formance level on multicore architectures. In particular, MPICH2 library is able to use
shortcuts via shared memory in this case, choosing ways of communication that effec-
tively use shared caches, hardware assists for global operations, and the like.

In a cluster of multicore nodes, it seems natural to employ a hybrid programming
model where MPI and thread work together. MPI-2 provides a special init routine
(MPI Init thread), to signal that you want to use MPI in a multithreaded environment
[8].

However, there is always the option to use pure MPI and treat every CPU core
as a separate entity with its own address space. The next experiments were carried
out linking the skeleton to MPICH2. The Fig. 3 shows the performance of 1- and 2-
dimensional partitioning of lattices of 256x256, 512x512 and 1024x1024 cells when
the degree of partitioning applied to each lattice was 4 (1n-4c), 16 (4n-4c) and 64
(16n-4c).

In this experimental case all cores of assigned nodes are usable by the MPI processes
with the restriction that only a single MPI process runs on a given core. The experiments
consider two different MPI process launching policies. The first policy uses the four
cores per node in base to a simple sequential ranking.

The last experiment,32n-2c, represents sixty-four processes on a 2D-mesh (8x8)
using a round robin ranking. In this case, the mesh was made up of two cores from each
of the 32 available nodes in the cluster.

In the case of sequential placement policy, we observed that as the degree of paral-
lelism grows, the performance improves. However, the better performance is achieved
when we do not fully use all the cores in a node (32 nodes under-subscribed). This con-
figuration effectively provides more memory bandwidth to each core and improves the
network latency experienced by each core, but it is not recommended because running
with fewer than the maximum number of cores per node reduces overall throughput of
a computing cluster.

Besides the problem to assign processes to nodes, it comes other problem related to
the distribution of processes to specific cores inside a single node. We observed that the
default policy used by MPI not all distributions are able to establish automatically an
affinity mechanism between processes and cores.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 83

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

256x256 512x512 1024x1024

tim
e

(s
ec

s)

lattice size

1D- and 2D-Partitioning. Multicore
1n-4c (Mesh 4)

4n-4c (Mesh 16)
16n-4c (Mesh 64)
1n-4c (Mesh 2x2)
4n-4c (Mesh 4x4)

16n-4c (Mesh 8x8)
32n-2c (Mesh 8x8)

Fig. 3. 1D and 2D Partitioning. Multicore Execution Times

On Linux Operating System, the system callsched_setaffinity has the abil-
ity to specify in which core within the node a certain process will execute. We incorpo-
rate in the skeleton this facility based on the knowledge of the hierarchy of multicore
cluster.

The Fig. 4 shows the execution time of theCA skeleton as a function of lattice size,
applying an explicit affinity between those neighboring processes that exchange data
and that have been allocated in the same node. As expected, there are vast reductions in
the execution times, showing an average reduction of the order of 13%, 25% and 30%
for 1n-4c-Aff, 4n-4c-Aff and16n-4c-Aff experiments respectively.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

256x256 512x512 1024x1024

tim
e

(s
ec

s)

lattice size

2D-Partitioning. Affinity
1n-4c-Aff (Mesh 2x2)
4n-4c-Aff (Mesh 4x4)

16n-4c-Aff (Mesh 8x8)

Fig. 4. 2D Partitioning. Multicore Execution Times using Affinity

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 84

Note that for this case of analysis (D=2 andD = 2), theCA skeleton was designed
to allocate, in matrix notation, the sublattice(ij) to the MPI process with rankj + i ∗
P 1/D. In sequential order, ranks0...3 go to the first node, ranks4...7 to second node,
and so forth. In round robin order, the MPI process rank0 goes to the first node, rank
1 to the second node, and so forth. In no case, theCA model topology maps efficiently
to the hardware topology. This leads to design a new policy to distributing sublattices
to MPI process, which is explained in the next section.

4.2 The Mapping Problem

By applying different strategies in the prototype, either in the skeleton code (e.g.,
affinity) as in its execution environment (MPICH2), the skeleton implementation has
achieved a considerable reduction in its execution time.

No matter of use case, a relevant observation is that the parallel implementation
of theCA model, includes stable communication patterns in which data interchange
occurs among neighboring sublattices. However, the methodology of allocating work to
the MPI processes does not regroup sublattices on the same node as much as possible
in a way that it reflects the behavior based on neighborhood of theCA model. This can
be observed graphically in Fig. 5 (left), for a 2D-Mesh (8x8). All nodes have the same
setup, for example, sublattices 00, 01, 02 and 03 are assigned to node 0, sublattices 04,
05, 06 and 07 to node 1 (not showed in the figure), sublattices 10, 11, 12 and 13 to node
2 and so on. Each node must manage ten inter-node communications (marked with deep
blue), two intra-node (dark blue) and four inter-chip (light blue).

The Fig. 5 (right) shows the configuration when theCA model implementation
applies a new mapping of sublattices to the different processes. In order to minimize
inter-node communication, a new mapping strategy is performed based on knowledge
of the communication mesh. This new mapping accomplishes two objectives: (1) all
nodes manage the same amount of inter-node communication and (2) it takes advantage
of multicore nodes hierarchy. As can be seen in the figure, of the four neighbors of a
sublattice, one of them is mapped on the same chip with which it shares the cache, the
other is mapped on the same node with which it shares the memory and the exchanges
with the other two neighbors inevitably require inter-node communication.

ForCA applications, the mapping was defined as a function of the indices of the
data partition (sublattices) and since there are no cross dependencies, the mapping be-
comes relatively easier. Through this mapping, performance improvements were ob-
served for our 2D-CA benchmark.

5 Results and Final Remarks

In a previous work, we have presented an implementation of parallelCA skeleton. It
attacks the classical problems inherent to parallel programming such as task and data
decomposition and communications. The skeleton frees the non-expert user from the
burden of dealing with low issues of parallelism.

The emergence of multicore processors with shared caches and non uniform mem-
ory access causes the hardware topology to became more complex. Therefore, a real

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 85

Fig. 5. Mapping of sublattices to MPI processes ranks in a 2D-Mesh (8x8)

challenge for parallel applications is to exploit such architecture at their potential. In
order to achieve the best performance, many new factors must be considered and stud-
ied.

In this paper, we carried out experimental work that enabled us to understand the
behavior of the architecture and implementation of the skeleton.This was possible be-
cause the parallelCA model is a typical application in which the data interchange oc-
curs among neighbor sublattices and the communication pattern does not change across
multiple executions.

The first experiment scattered the processes among the nodes. The second exper-
iment regrouped the MPI processes on the nodes, but the operating system chose the
placement of them among the cores. The third experiment also regrouped processes,
but the skeleton implementation applied an affinity based on the knowledge of the hier-
archy of multicore cluster. These experiments showed how the different MPI processes
launching strategies impact in the performance on a multicore cluster and they were
useful for exploring the hierarchy of the architecture.

Afterwards, we show a new mapping strategy that can obtain benefit in the per-
formance by adapting its communication structure to the hardware affinities among
processes.

The Fig. 6 shows a comparison of the implemented strategies in this work consid-
ering tree different lattice sizes. For the experiments called-Aff and-Aff-Mpp, the
MPI processes were allocated on the same node as much as possible, i.e. in sequential
order. For a small mesh size as 2x2 (partitioning degree=4) , the multicore strategies
performed in much the same way as the non multicore one (n-1c). This behavior il-
lustrates how the high costs of sequential computation in each core can not support
optimizations. For 16 and 64 cores, the simultaneous application of all multicore strate-
gies are the cases that achieve better performance.

The experimental work of this research was showing guidelines that are important
to consider to run applications on a multicore system. With respect to its former version,
thisCA prototype release introduced features that significantly improved performance
of the simulation of topologically connected problems.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 86

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

256x256 512x512 1024x1024

tim
e

(s
ec

s)

lattice size

2D-Partitioning. Mesh of size 2x2
4n-1c
1n-4c

1n-4c-Aff

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

256x256 512x512 1024x1024

tim
e

(s
ec

s)

lattice size

2D-Partitioning. Mesh of size 4x4
16n-1c

4n-4c
4n-4c-Aff

4n-4c-Aff-Mpp

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

256x256 512x512 1024x1024

tim
e

(s
ec

s)

lattice size

2D-Partitioning. Mesh of size 8x8
32n-2c
16n-4c

16n-4c-Aff
16n-4c-Aff-Mpp

Fig. 6. Execution Times using 4 (top), 16 (bottom-left) and 64 cores (bottom-right)

6 Future Work

We have implemented a first version of the high performance 2D-CA skeleton and early
experiences showed us that the strategy of allocation is very important in a multicore
environment. But, all developments were performed on a particular type of cluster, of
quadcore nodes. We are working to generalize the mapping strategy to cluster with
larger number of core per node, where the hierarchy of memory access can be even
greater.

The skeleton now includes an additional module to perform a mapping of processes
at runtime. The design of this module requires three types of information: a) size of
problem and partitioning degree chosen by the user, b) partitioning scheme applied to
CA and c) topology of the parallel machine (cluster). The first two requirements are
supplied directly by theCA skeleton(N,P) and (D andD) respectively. Gathering the
hardware information is essential to perform the mapping the mesh of communication
in the resources of cluster assigned. While this experimental work applied a strategy
of mapping in knowledge of the underlying architecture of the cluster, we are studying
a tool that gives support to obtain the third piece of information required by our map-
ping module. This tool should provide the information of the hardware features such as
number of cores per node, connectivity, cache size of the nodes allocated for parallel
execution of theCA, among others. In addition information is required on the identifi-
cation of processing elements (cores) available for allocation of sub lattices. With some
differences, recent publications [6] [2] agree to propose a system API or runtime system
to obtain the topology information in a portable way and export it to mapping module
transparently to the user.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 87

We are also examining other factors that probably influence theperformance of
communications, as cache and shared memory sizes.

Acknowledgments

We wish to thank the Department of Computer Architecture and Operating Systems of
the Universidad Autonoma of Barcelona for allowing us to use their resources. Also to
the Universidad Nacional of San Luis, the ANPCYT and the CONICET from which we
receive continuous support.

References

1. OpenMP architecture processing reference model. ITU-TX.901,ISO/IEC 10746-1. available
at http://enterprise.shl.com/RM-ODP/default.html.

2. François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento, Brice
Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. hwloc: a Generic
Framework for Managing Hardware Affinities in HPC Applications. InProceedings of the
18th Euromicro International Conference on Parallel, Distributed and Network-Based Pro-
cessing (PDP2010), pages 180–186, Pisa, Italia, February 2010. IEEE Computer Society
Press.

3. L. Chai, A. Hartono, and D. K. Panda.Designing High Performance and Scalable MPI Intra-
node Communication Support for Clusters. The IEEE International Conference on Cluster
Computing (Cluster 2006), 2006.

4. Open MPI: Open Source High Performance Computing. http://www.openmpi.org.
5. Saez F. and Printista M.Parallel Cellular Computing Model. Proceedings of the IADIS

international conference. ISBN: 978-972-8924-97-3 ,Vol 2, pages 145-149, 2009.
6. G. Mercier and J. Clet-Ortega.Towards an Efficient Process Placement Policy for MPI Appli-

cations in Multicore Environments. PVM/MPI 2009: 104-115, 2009.
7. MPICH2. http://www.mcs.anl.gov/mpi/.
8. R. Rabenseifner, G. Hager, and G. Jost.Hybrid MPI/OpenMP Parallel Programming on

Clusters of Multi-Core SMP Nodes. In Proceedings of the 17th Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing (PDP 2009),427436, Weimar,
Germany, 2009.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 88

