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2 Instituto de F́ısica Enrique Gaviola (CONICET - U.N.C.)

Abstract. The evolution calculation of quantum systems represents a
great challenge nowadays. Numerical implementations typically scale ex-
ponentially with the size of the system, demanding high amounts of re-
sources. General Purpose Graphics Processor Units (GPGPUs) enable a
new range of possibilities for numerical simulations of quantum systems.
In this work we implemented, optimized and compared the quantum
Trotter-Suzuki algorithm running on both CPUs and GPUs.

1 Introduction

In the physics of macroscopic systems, the evolutions are typically ruled by
classical equations (Newton’s three laws of motion), where the numerical com-
putation scales linearly with the size of the system. However, in the microscopic
world, where the evolutions are governed by quantum mechanics (Schrödinger
equation), the computation scales exponentially. Thus, the search of algorithms
capable to perform numerical evolutions of quantum systems has become a ne-
cessity. The exact numerical computation of a quantum evolution on discrete
systems implies a digitalization procedure with 2N × 2N matrices, where N
is the number of sites in the system. From this diagonalization it is observed
that the computational time increases exponentially. In order to deal with this
problem, the Trotter-Suzuki Algorithm (TSA)[1, 2] implements an approximated
method based on coarse-grain evolutions, taking advantage of the exponential
operator properties to perform a partition of the dynamics into smaller piece
evolutions which can we made independently, allowing parallelization. This al-
gorithm has been previously applied to the study of the dynamical behavior of
quantum chaotic systems [3, 4].

A high performance implementation of the Trotter-Suzuki algorithm is highly
useful for numerical studies in quantum chaotic systems and time reversal sim-
ulations [3, 4]. Additionally, the use of pair partitioning methods in classical
oscillators [5] enables the implementation of this algorithm (with few changes)
for the study of sound propagation in one and two dimensional systems.
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In this work we present a parallelization on CPUs and GPUs of the TSA
algorithm used to study the evolution of gaussian wave packets within two di-
mensional (2D) tight binding systems.

2 Trotter-Suzuki Algorithm

The heart of the TSA is the decomposition of dynamics into sets of small uni-
tary evolutions. The evolution of a quantum state within a time independent
hamiltonian H is written as follows,

|Ψ (t)〉 = exp

(
− i
}
Ht

)
|Ψ (t = 0)〉 , (1)

where |Ψ(t = 0)〉 is the initial state.
Under separable conditions, the Hamiltonian H can be written as a sum of H1

and H2. Thus, Ec.1 is rewritten as follows,
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where [H1,H2] is the commutator operator between H1 and H2.

By performing a time evolution with t << 1, exp
(
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)

is approxi-
mated by 1,
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)
|Ψ (t = 0)〉 . (3)

In this way, Ec. 3 shows that the quantum dynamics is separated as a com-
position of two evolutions.

Taking into account the approximation of Ec.3 and using the appropriate H1

and H2, it is possible to construct the total quantum dynamics by splitting it
into small sub-system evolutions.

2.1 Trotter Suzuki approximation in tight binding chains

In this section we will show the application of the TSA to a tight binding chain
(1D system). In a simplistic way, the Hamiltonian for this type of systems is
represented by a set of sites with nearest-neighbor interactions forming a linear
chain. To obtain the total dynamics of a gaussian packet in this system we apply
a finite number of ∆t steps. The smaller the value of ∆t, the more accurate the
approximation of the quantum dynamics.

The TSA divides the evolution from t to t + ∆t into two-sites “grains”(see
Eq. 3), which can be performed independently. Each of these two-sites evolutions
is calculated from the exact solution to the following hamiltonian,
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H =

(
0 −V
−V 0

)
, (4)

where V is the coupling element between the two sites.
The solution for this system is found by using Eq. 1,

|Ψ (t+∆t)〉1 = cos(V
∆t

}
) |Ψ (t)〉1 + i sin(V

∆t

}
) |Ψ (t)〉2

|Ψ (t+∆t)〉2 = i sin(V
∆t

}
) |Ψ (t)〉1 + cos(V

∆t

}
) |Ψ (t)〉2 (5)

From Eq. 5 we can observe that the evolution from t to t+∆t requires the values
of both sites at the previous step, so it is crucial to synchronize all the “grains”
at each temporal step.
From now on, we will use this two-sites exact evolution as the building block for
solving more complex quantum dynamics.

In Fig 1 we show the procedure for a ∆t step in a tight binding chain, where
the separation of the problem into two-site evolutions is schematized. It is im-
portant to note that one temporal ∆t evolution is achieved by performing two
computational steps, and after each of these the TSA requires the synchroniza-
tion of the whole system.

Fig. 1. Scheme for the 1D evolution. The circles represent the sites of the system,
and the black lines their couplings. The red circles paired by black lines are two-site
evolutions. In this figure it is possible to observe that the evolution of each pair is
independent from the other pairs.

2.2 TSA in 2D tight binding

To perform a ∆t evolution in a 2D system it is necessary to increase the num-
ber of computational steps in order to account for every two-site combination
and at the same time avoid synchronization problems. In order to get a better
approximation, we have developed code for the second order approximation of
the TSA method, which can be found in Ref. [1]. In Fig. 2 we schematized the
procedure to perform a ∆t step.
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Steps 1,8 Steps 2,7

Steps 3,6Steps 4,5

Fig. 2. Scheme for the 2D second order ∆t evolution.

3 GPGPU introduction and terminology

GPUs are gaining popularity in the High Performance Computing field as cost-
effective high throughput accelerators for massively parallel problems. While
CPUs dedicate most of their transistor count to improve sequential code perfor-
mance, GPUs take a different approach housing hundreds of simple execution
units which run one thread each at a time.

The work to be done by each thread is specified by a function called kernel.
All threads run the same kernel. Execution units share instruction fetch and
decode hardware like vector processors do, running bundles of threads called
warps3, however each thread has its own instruction pointer to allow divergence
on branches. This model is called SIMT (Single Instruction, Multiple Thread)
and provides more flexibility than SIMD units, but must be used carefully as
threads in a warp whose instruction pointer differs from the one that is currently
executing must remain idle, reducing throughput.

Multiprocessors contain several execution units and schedule warps to run
on them. Warps are grouped into thread blocks that can be synchronized using
block-wide barriers and cooperate with other threads in the block through shared
resources on the multiprocessor they’re running in. These resources include a L1

3 AMD calls them wavefronts.
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cache and a low latency, user managed shared memory 4. All multiprocessors in
a GPU can access the global memory on the board (through the L2 cache), which
is also an endpoint for host-GPU communication through the PCI Express bus.
GPUs don’t have prefetching hardware and their caches are relatively small, so
the latency on accesses to global memory is hidden by sending a thread block
that’s waiting for data to sleep and running another block resident on the same
multiprocessor in the meantime.

4 Implementation

It’s easy to see that the step formula in Eq. 5 has the following form for each
pair of adjacent sites (p, q),

p′ = a(p,q)p+ ib(p,q)q

q′ = a(p,q)q + ib(p,q)p (6)

where a(p,q) = cos(V(p,q)
∆t
} ) and b(p,q) = sin(V(p,q)

∆t
} ) are constant and can

be precalculated for each pair. All our implementations are based on this formula.
We will be using the same a and b on every coupling to avoid polluting the caches
with coupling values for easier analysis.

4.1 Naive CPU approach

Our first approach was a naive reference implementation of each computational
step in a time step. Each computational step is performed in a single pass over
the matrix of sites that updates one pair of sites at a time. As the nodes (p, q) in
each pair are adjacent, we can loop over the nodes with the lower index in each
pair and add a constant shift value to its index to obtain its peer. The shift value
is 1 for steps along the x axis, and the row stride for steps along the y axis. If we
colored the nodes that the loop steps on, this algorithm paints a checkerboard
pattern on the grid.

Since updates are independent, the outer loop over the rows of the matrix
was parallelized using OpenMP, resulting in linear scaling with close to perfect
efficiency for small system sizes (see Fig.3). For large system sizes and thread
counts, performance plummets once the system no longer fits in the processor
caches.

4.2 Naive GPU approach

Our GPGPU efforts began with a straight port of the original CPU code to a
CUDA C kernel. We ran one thread per pair of nodes with each thread starting
on the nodes along the checkerboard pattern mentioned earlier. Each thread
reads the node it’s on and its peer, updates their values and writes them back
to global memory.

4 AMD calls it local data store.
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Fig. 3. Early implementation results, single precision.

Originally this code was ran on GeForce GTX 280 boards which are very
sensitive to the patterns in which warps access global memory, and as these
strided accesses to memory weren’t fully coalesced 5 this resulted in very mod-
est speedups when compared to CPU code. Fermi-based GPUs read full cache
lines and serve execution units from cache like CPUs do, which improves the
performance of this code significantly.

Previous studies on GPU stencil computations[6, 7] have been focused on
optimizing memory access patterns to avoid excessive refetching on large stencils,
but the TSA algorithm only requires one read per element per computational
step. However, [6] points out that further improvements can be obtained by
performing multiple steps in shared memory, which will be discussed later.

4.3 Vectorized CPU approach

Since the next value of each node is calculated in the same fashion for every
node, we set out to improve our initial approach through vectorization[8, 9].
Computation steps that pair sites along the x axis can be processed without

5 Adjacent and aligned on a 128 bit boundary.
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problems using vectors of arbitrary even widths in the following way,

v̂ = 〈p0, q0, p1, q1, ..., pn, qn〉
t̂ = 〈q0, p0, q1, p1, ..., qn, pn〉
â = 〈a0, a0, a1, a1, ..., an, an〉
b̂ = 〈b0, b0, b1, b1, ..., bn, bn〉

〈p′0, q′0, p′1, q′1, ..., p′n, q′n〉 = â⊗ v̂ ⊕ b̂⊗ t̂

where v̂ is read sequentially from each matrix row, t̂ can be obtained from v̂
through shuffling operations, and ⊗ and ⊕ are the pointwise product and sum
of vectors6 respectively.

On the other hand, computation steps that pair sites along the y axis need
to read two rows simultaneously and update every other value in each row,
which is detrimental to memory bandwidth and cache utilization and involves
unnecessary amounts of shuffling, as half the data in each vector read needs to
be rearranged. This motivated a change in memory layout.

As mentioned earlier, if we apply a checkerboard-like red-black coloring to
the nodes on the grid, we can see that computational steps update pairs of sites
that are on different colors. The index shift for steps along the y axis remains at
one row stride, which is now halved, but on the x axis the shift can be either 0
or 1 depending on whether the row number is even or odd.

Fig. 4. Red-black split of a horizontal computational step.

With this memory layout we can run computational steps by traversing the
lower-indexed color matrix and pairing each of its elements with its peer on the
opposite color after applying the appropriate index shift for the current compu-
tational step and row. Since the index shift s ∈ {seven, sodd} for a particular step
is constant for every element in an even or odd row, a step can be vectorized
using

6 As these are operations on complex numbers, there’s an abuse of notation for simplic-
ity. Calculating a complex product on packed data takes extra vector instructions,
so real and imaginary data are stored on separate matrices and vectors.
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r̂d = 〈rd0, rd1, rd2, ..., rdn〉
b̂k = 〈bk0+s, bk1+s, bk2+s, ..., bkn+s〉
â = 〈a0, a1, a2, ..., an〉
b̂ = 〈b0, b1, b2, ..., bn〉

〈rd′0, rd′1, rd′2, ..., rd′n〉 = â⊗ r̂d⊕ b̂⊗ b̂k〈
bk′0+s, bk

′
1+s, bk

′
2+s, ..., bk

′
n+s

〉
= â⊗ b̂k ⊕ b̂⊗ r̂d

This method has no shuffling overhead and, given a matrix with a leading
dimension length that is a multiple of 16 bytes, we can use aligned vector reads
on one or both matrices depending on the shift required.

The implementation of this approach using SSE intrinsics runs up to 260%
faster in single precision mode (Fig.5) and 60% faster in double precision than
the reference implementation, but as soon as the system size grows too large for
the caches to hold the performance drops to the same level as the regular code.
(observe the critical point in Fig.5)

4.4 Tackling the memory bottleneck

While our dual Xeon setup has 16MB split between two 8MB L3 caches that
can house up to 1448 × 1448 single precision systems, Fermi’s 768KB L2 cache
isn’t nearly as spacious. As GPUs rely on massive parallelism to hide memory
access latencies and fill their large amounts of execution units, small systems that
do fit inside the GPU cache can’t spawn enough threads to perform optimally,
resulting in the small bump seen on small systems in Fig.3. This placed our early
GPU kernels barely ahead of the vectorized CPU code.

The key factor to these performance issues is the very low number of opera-
tions per element per computational step, which results in execution unit stalls
because the memory subsystem can’t keep them fed with a steady stream of
data. We can estimate the minimum number of instructions needed per element
to avoid stalls on uncached memory accesses by dividing the peak throughput
of the processor times twice the size of the elements (one read, one write) by
the memory subsystem bandwidth. The estimations for the hardware we tested
is shown in Table 1.

The three instructions executed on each element per computational step are
far lower than our estimated ideal ratios, so we focused our efforts on increasing
this number. The only way to do more work on each element read from memory
is to run multiple computational steps on it at a time. Suppose we do two
computational steps at a time. Expanding formula 6 for one of the nodes in a
pair we have:

p′′ = a(p,q)p
′ + ib(p,q)q

′

= a(p,q)(a(p,r)p+ ib(p,r)r) + ib(p,q)(a(q,s)q + ib(q,s)s)
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Table 1. Computational resources

Memory Bandwidth GFLOPS Instructions/element
System subsystem (GBPS) float double float double

Dual Xeon X55507 Dual triple-channel DDR3-1066 51.2 170.24 85.12 26.6 26.6

Tesla C20708 384 bit 3132MHz GDDR5 150.3 1030.4 515.2 54.8 54.8

GeForce GTX 5808 384 bit 4002MHz GDDR5 192.4 1581.1 197.63 65.8 16.4

where r and s are p’s and q’s peers on the first step respectively. Although this
approach has exponential growth of the number of instructions per element,
most of the terms are recalculated several times in one pass through the whole
matrix.

We can also split the system into small blocks and evolve each block multiple
steps at a time. Work on the block isn’t constrained by memory bandwidth as
long as blocks fit inside on-chip memory. However, splitting the problem presents
new difficulties due to the way in which the stencil changes on each step.

Suppose that a block has been read to on-chip memory and evolved a number
of steps. We can’t write the results back to the same matrix from where it was
read, as blocks adjacent to it still need some values on the boundary between the
blocks for their own evolution. This is fixed through double buffering, allocating
two matrices instead of one and going back and forth between the two, reading
from one and writing on the other.

As we try to perform more computational steps on a block, the amount of
nodes external to the block that are required to perform a step on nodes near
the boundaries of the block increases. The external nodes are required at varying
computational steps, so these nodes also must be updated. These nodes generate
a halo around a block that must also be read into on-chip memory and updated,
but that at later steps become invalid because their own halos aren’t present.
One of the halo patterns can be seen in Fig. 5.

To minimize the overhead of reading and updating halo values, we must pick a
combination of block size and computational steps performed (which determines
the minimal halo size) that is optimal. The 24 instructions involved in performing
all eight steps in a time step on a block are close to our instruction per element
estimation for CPUs, while requiring a manageable 6 halo columns and 8 halo
rows per block (which makes slightly taller blocks more efficient in terms of
overhead than square blocks), so the block size was determined by taking the
largest matrix that fits in on-chip memory and subtracting the halo from it.
Duplicating the number of steps to reach a number closer to a GPU’s estimated
optimal instructions per element would result in a huge halo with prohibitive
overhead so we used the same number of steps on both architectures.

The multiple step strategy, combined with the tunable block size that de-
pends on the hardware’s cache size, put the algorithm in the family of cache-
aware stencil computations[10]. Further flexibility could be obtained by switching
the strategy from fixed blocking to cache-oblivious trapezoids[11, 12].

7 ICC 11.1, openSuSE 11.2 x86-64
8 NVCC 3.2, Debian 6.0.1
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Fig. 5. Halo required by a full step update on a block boundary. Each neighbor is
labeled with the last step number in which its value contributes to the update. There
are two different halo patterns per computational step, one for each column or row in
a 2 × 2 sub-block.

4.5 Full time step GPU approach

In Fermi hardware, shared memory holds up to 48KB per multiprocessor, or
6144 single precision complex numbers. We chose to run two 32 × 16 thread
blocks on each multiprocessor to allow the GPU to hide the memory latency,
limiting our block size to 3072 elements. As said earlier tall blocks have less halo
overhead, so we decided on a width of one full GPU warp (32 threads) for SIMT
purposes which results in blocks and thread blocks being 96 and 16 elements tall
respectively. This puts our overhead at

halo

block
=

3072− block
block

=
3072− 26× 88

26× 88
= 34%.

The kernel reads six 32×16 sub-blocks from global memory into shared mem-
ory. The thread block is then arranged in a 32×32 checkerboard pattern similar
to the naive implementation, and each thread updates a pair of elements in each
third of the block. Finally, the halo is discarded and six 26×16 writes (except for
the last sub-block, which is 8 elements tall) are done to global memory, the two
matrix pointers are swapped on kernel completion and the process is repeated
for the next time step.

Even with the considerable amount of overhead, this implementation runs
up to 200% faster (Fig.6) than the original GPU implementation. The double
precision results in Fig.7 show our GTX 580 being held back by its lower peak
double precision GFLOPS and performing similarly to the memory constrained
Tesla C2070 which has less memory bandwidth, confirming that our instructions
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Fig. 6. Full time step results, single precision.

per element ratio theory is sound and that the kernel we’ve written is well over
the actual ratio.

4.6 Full time step CPU approach

CPU caches aren’t manageable in software9, but we can assume that code with
strong temporal and spatial locality will be cached properly, so we allocate one
static 32KB buffer per core, which is the size of our processor’s L1 data cache.
Each core then picks a row of blocks and proceeds in similar fashion to the GPU
code, copying blocks and their halos to its static buffer, running the computa-
tional steps on it with our vectorized code, and writing the block back to the
matrices.

To make vectorization easier we widened the halo to 8 columns, making the
overhead for tall and wide blocks the same. This makes square blocks optimal,
so we decided to use blocks of 64× 64 single precision elements, resulting in an
overhead of

halo

block
=

4096− block
block

=
4096− 56× 56

56× 56
= 30%

As we can see in Fig. 6 the code still performs up to 15% faster when the
problem fits in cache, but increasing the number of computational steps any

9 Except for prefetch instructions.
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Fig. 7. Full time step results, double precision.

further would also enlarge the halo, reducing efficiency. Comparing the peak
throughput obtained when the vectorized code fits in cache with the full time step
code’s throughput (taking into account its overhead) we can say that there’s still
room for improvement in CPU performance on large systems for this particular
approach, but the 180% speedup over regular bandwidth constrained code paints
a better picture of the capabilities of the platform than earlier implementations.

5 Conclusions and future work

In this work we implemented the Trotter-Suzuki algorithm for both CPUs and
GPUs in a 2D tight binding system. We studied the speedup obtained through
different strategies and compared them with their GPGPU ports, and found
that running multiple computational steps at a time is the best option for TSA
implementations on both platforms.

In the comparison between CPU and GPU implementations, our testing re-
vealed that the latter have the best performance. The speedups obtained on
GPUs against high end CPU setups range from 2.5x when the whole system fits
in CPU caches, to 11x for large systems.

Further work can be done on improving the current CPU strategy for lower
computation overhead on halo management, or replacing it completely with a
cache-oblivious algorithm. Distributing the problem across many GPUs on a
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single host or across many hosts on a low latency network should also increase
performance, although the tight coupling at boundaries requires careful consider-
ation. As mentioned earlier, the code can also be adapted for sound propagation
simulation with minor changes.
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