
Solving Algebraic Riccati Equations on Hybrid

CPU-GPU Platforms

Pablo Ezzatti1, Enrique S. Quintana-Ortí2, and Alfredo Remón2

1 Centro de Cálculo–Instituto de Computación, Universidad de la República,
11.300–Montevideo, Uruguay, pezzatti@fing.edu.uy

2 Depto. de Ingeniería y Ciencia de Computadores, Universidad Jaume I,
12.071–Castellón, Spain, {quintana,remon}@icc.uji.es

Abstract. The solution of Algebraic Riccati Equations is required in
many linear optimal and robust control methods such as LQR, LQG,
Kalman filter, and in model order reduction techniques like the bal-
anced stochastic truncation method. Numerically reliable algorithms for
these applications rely on the sign function method, and require O(8n

3)
floating-point arithmetic operations, with n in the range of 103

− 105

for many practical applications. In this paper we investigate the use
of graphics processors (GPUs) to accelerate the solution of Algebraic
Riccati Equations by off-loading the computationally intensive kernels
to this device. Experiments on a hybrid platform compose by state-of-
the-art general-purpose multi-core processors and a GPU illustrate the
potential of this approach.

1 Introduction

In this paper we target the solution of large-scale Algebraic Riccati Equations
(AREs) of the form

FT X + XF −XGX + Q = 0

where F, X, G and Q ∈ R
n×n. We consider a system to be large-scale if n ∼

O(1, 000)−O(100, 000).
This kind of equations appears in many linear optimal and robust con-

trol methods like the infinite horizon time-invariant Linear-Quadratic Regulator
problem (LQR), the infinite horizon time-invariant Linear-Quadratic-Gaussian
control problem (LQG), the Kalman filter, and in model order reduction tech-
niques as the Balanced Stochastic Truncation (BST) method [1].

The numerical method for the solution of AREs considered in this paper is
based on the sign function method computed via the Newton iteration method.
This technique requires the computation of dense linear algebra operations. Al-
though there exist several other approaches to solve AREs, in general those
require a larger computational cost.

Recent work on the implementation of BLAS kernels and the major factor-
ization routines for the solution of linear systems [8, 5, 2, 6] has demonstrated
the potential of graphics processors (GPUs) to yield high performance on the
computation of dense linear algebra operations which can be cast in terms of

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 41



2

matrix-matrix products. In [4] we studied the solution of standard Lyapunov
equations on GPUs using high performance computing techniques. Here, we fur-
ther extend this work optimizing the computation of the different stages in the
sign function method for the solution of AREs, and other minor computations
required (build matrix and solve the overdetermined system).

The target architecture is a hybrid platform consisting of a general-purpose
multi-core processor and a GPU. We exploit these two resources by designing a
hybrid numerical algorithm to solve AREs that performs fine-grained computa-
tions on the CPU while off-loading the most computationally intensive opera-
tions to the GPU.

The rest of the paper is structured as follows. In Section 2 we briefly review
the sign function method for AREs and describe an efficient approach to compute
it on a hybrid CPU-GPU platform. In Section 3 we present some experimental
results that illustrate the efficiency attained by the numerical algorithms on a
platform consisting of two Intel QuadCore processors connected to a NVIDIA
Tesla C2050 GPU via a PCI-e bus. Finally, in Section 4 we provide a few con-
cluding remarks and future work.

2 The Riccati sign function method

The stabilizing solution of an ARE (i.e. one that F + GX is symmetric and
stable matrix) of the form

FT X + XF −XGX + Q = 0 (1)

can be defined by the invariant subspaces of the pencil H −λI2n, where n is the
dimension of matrix H , I2n is the identity matrix of dimension 2n and H is the
Hamiltonian matrix defined as

H =

[

F G
−Q −FT

]

. (2)

Additionally, it can be shown that the matrix generated by a base of the H
invariant spaces is the solution of the associated ARE in Eq. (1) (see [3]). This
solution can be obtained computing the sign function (sign) of H ,

sign(H) = Y =

[

Y00 Y01

Y10 Y11

]

, (3)

and then, solving the overdetermined system (e.g., applying the least squares
method),

[

Y11

Y12 + In

]

X =

[

In − Y10

−Y00

]

. (4)

Algorithm GECRSG summarizes the steps to be computed to solve an ARE
with the described method.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 42



3

Algorithm GECRSG:

H0 ←

[

F G
−Q −FT

]

for k = 0, 1, 2, . . . until convergence

Hk+1 ←
1

2ck

(

Hk + c2
k
H−1

k

)

solve

[

Y11

Y12 + In

]

X =

[

In − Y10

−Y00

]

The Newton iteration for the sign function usually presents a fast conver-
gence rate, which is ultimately quadratic. Additionally, initial convergence can
be accelerated using several techniques. In our approach, we employ a scaling
defined by the parameter

ck =
√

‖Hk‖fro/‖H−1

k
‖fro.

2.1 Hybrid implementation of the Riccati solver

In this section we describe an efficient implementation for the solution of AREs.
This implementation is specially designed for hybrid computational platforms
composed by multi-core CPU connected to a GPU.

There are two kinds of computational units on the target platform, and the
objective of the hybrid implementation proposed is to reduce the computational
time of the AREs solver executing each operation on the most convenient archi-
tecture. Particulary, the largest operations are executed on the GPU while the
fine-grain operations are executed on the CPU.

The procedure to solve AREs can be divided into three steps:

– First, is necessary to build matrix H performing some matrix-matrix multi-
plications. Due to the relatively small dimensions of the matrices involved,
these operations require a moderate cost. For this reason, and with the aim
to reduce data transfers overheads, those operations are performed on the
CPU.

– Second, the sign function for the extended matrix (Eq. 2) is computed. The
proposal is based on an efficient hybrid matrix inversion kernel.
The hybrid algorithm proceeds as follows. At the beginning of each itera-
tion, the CPU transfers matrix Hk to the GPU. Then, the CPU and the
GPU cooperate in the inversion of matrix Hk. Finally, the inverse matrix
is transferred to the CPU and the iteration finishes. The implementation
includes processing by blocks, hybrid and concurrent computing (CPU +
GPU), look-ahead techniques [7], and padding. The rest of the operations
are performed on the CPU since they require a minor computational effort
and can be efficiently executed using multi-thread level parallelism, i.e., em-
ploying multi-thread implementations of BLAS and LAPACK to compute
linear algebra operations and using OpenMP in other cases.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 43



4

– Finally, the overdetermined system is solved. To do so, a multi-thread ver-
sion of routine DGEQP3, included in LAPACK, is employed. Other minor
operations are also executed on the CPU and parallelized using OpenMP.

3 Numerical Experiments

In this section we evaluate the parallel performance of the AREs solver presented
in the previous section. The target platform consists of two Intel Xeon Quad-
Core E5410 processors at 2.33GHz, connected to an nvidia Tesla C2050 via a
PCI-e bus (see Table 1 for more details). We employed a multi-threaded imple-
mentation of BLAS in MKL (version 10.2) for the general-purpose processor and
nvidia CUBLAS (version 3.2) for the GPU. We set OMP_NUM_THREADS=8 so that
one thread is employed per core in the parallel execution of the MKL routines in
the Intel Xeon QuadCore processors, and OMP_NUM_THREADS=1 on the evaluation
of the sequential version.

Processors #cores Freq. L2 Memory
(GHz) (MB) (GB)

Intel Xeon 8 2.3 12 8
nvidia Fermi 448 1.3 – 3

Table 1. Hardware employed in the experiments.

We compare three different implementations: a sequential implementation
(ARES_SCPU) that is executed on a single CPU core (used as the reference
implementation), a parallel multi-thread implementation (ARES_MTCPU) that
exploits all the cores on the CPU, and a hybrid CPU-GPU implementation
(ARES_HYB) that executes operations concurrently on the GPU and on the
CPU cores.

We employ double precision arithmetic on the solution of two instances from
the STEEL_I model reduction problem, extracted from the Oberwolfach bench-
mark collection (University of Freiburg)3.

The STEEL_I model arises in a manufacturing process for steel profiles. The
goal in this problem is to design a control that yields moderate temperature
gradients when the rail is cooled down. The mathematical model corresponds
to the boundary control for a 2-D heat equation. A finite element discretiza-
tion, followed by adaptive refinement of the mesh results in the example in this
benchmark. The problem dimensions depends of the discretization mesh, the two
versions employed in this work are STEEL_I1357 with n = 1, 357 and STEEL_I5177

with n = 5, 177.
Table 2 summarizes the results obtained with all the implementations eval-

uated. The execution time dedicated to build matrix H is shown in column 2;

3 http://www.imtek.de/simulation/benchmark/.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 44



5

Implementation H init. sign(H) System solver Total

time(s)

STEEL_I1357

ARES_SCPU 0.10 118.15 3.23 121.48

ARES_MTCPU 0.05 22.34 0.57 22.92

ARES_HYB 0.05 10.93 0.57 11.55

STEEL_I5177

ARES_SCPU 1.52 6404.65 325.34 6730.61

ARES_MTCPU 0.86 1127.87 25.05 1153.78

ARES_HYB 0.78 292.93 24.92 318.63

Table 2. Execution time (in seconds) of the AREs solvers for the STEEL_I benchmark.

column 3 shows the time required compute sign(H); column 4 displays the time
spent on the solution of the overdeterminated system; and column 5 shows the
accumulated time. All the times given in Table 2 include the costs to perform
all the necessary CPU-GPU data transfers.

A careful study of the sign function procedure, demonstrates that the compu-
tational effort is focused on the computation of matrix inverses. This operation
is accelerated at the ARE_MTCPU implementation using multi-thread codes.
The ARE_HYB variant goes a step forward on the optimization of the matrix
inverse procedure using the Gauss-Jordan elimination method, which is more
suitable for its execution on parallel architectures, and off-loading part of the
computations to the GPU.

Times reported for the STEEL_I1357 instance show a great benefit from the
usage of the multi-core (ARE_MTCPU) and the hybrid (ARE_HYB) imple-
mentation, which are 5 and 10 times faster than the sequential implementation
respectively. But from the results obtained for STEEL_I5177 we can conclude that
these differences are increased for larger problems. In this case, ARE_MTCPU
is nearly 6 times faster than ARE_CPU, while ARE_HYB is more than 21
times faster. This is due to the fact that larger problems presents a larger inher-
ent parallelism, and therefore, they are more suitable for the massively parallel
architecture present at the GPU.

4 Concluding Remarks

We have presented two high performance parallel implementations for the solu-
tion of AREs. They differ on the target platform, variant ARE_MTCPU is de-
signed for its execution on a multi-core CPU, while ARE_HYB is optimized for
its execution on a hybrid platform composed by a CPU and a GPU. ARE_HYB
demonstrated to be a high performance AREs solver which exploits the capa-

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 45



6

bilities of both architectures, the multi-core CPU and the many-core GPU. Two
levels of parallelism are employed at this implementation: at the inner level,
multi-thread computational kernels included at the BLAS library (MKL and
CUBLAS) are employed to compute the most time-consuming linear algebra
operations; at the outer level, operations proceed concurrently in both architec-
tures, overlapping computations on the CPU and on the GPU.

Some experimental results show that large-scale AREs can be tackle with
this kind of platforms in a reasonable computational time.

The promising results obtained encourage us to continue improving the devel-
oped implementations employing new high performance computing techniques
and architectures. The future and on-going work includes:

– Exploit the use of multiple GPUs to further reduce the computational time
and increase the dimension of the affordable problems.

– Evaluate the use of mixed precision techniques that allow to perform most
of the computations in single precision arithmetic (note that the throughput
on both architectures is larger for single precision arithmetic).

Acknowledgements

The authors would like to thank Jimena Ferreira for his valuable suggestions
that improved this work.

References

1. A.C. Antoulas. Approximation of Large-Scale Dynamical Systems. SIAM Publica-
tions, Philadelphia, PA, 2005.

2. S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, E. S. Quintana-Ortí, and
G. Quintana-Ortí. Exploiting the capabilities of modern GPUs for dense matrix
computations. Concurrency and Computation: Practice and Experience, 21:2457–
2477, 2009.

3. P. Benner, R. Byers, E.S. Quintana-Ortí, and G. Quintana-Ortí. Solving algebraic
Riccati equations on parallel computers using Newton’s method with exact line
search. Parallel Comput., 26(10):1345–1368, 2000.

4. P. Benner, P. Ezzatti, E. S. Quintana-Ortí, and A. Remón. Using hybrid CPU-GPU
platforms to accelerate the computation of the matrix sign function. In H.-X. Lin,
M. Alexander, M. Forsell, A. Knüpfer, R. Prodan, L. Sousa, and A. Streit, editors,
Euro-Par 2009, Parallel Processing - Workshops, number 6043 in Lecture Notes in
Computer Science, pages 132–139. Springer-Verlag, 2009.

5. P. Bientinesi, F. D. Igual, D. Kressner, and E. S. Quintana-Ortí. Reduction to
condensed forms for symmetric eigenvalue problems on multi-core architectures. In
Proceedings of the 8th International Conference on Parallel Processing and Applied

Mathematics – PPAM’09, Lecture Notes in Computer Science. Springer. To appear.

6. H. Ltaif, S. Tomov, R. Nath, P. Du, and J. Dongarra. A scalable high performance
cholesky factorization for multicore with GPU accelerators. Lapack working note
223, University of Tennessee, 2009.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 46



7

7. A. Strazdins. A comparison of lookahead and algorithmic blocking techniques for
parallel matrix factorization. TR-CS-98-07 07, The Australian National University,
1998.

8. Vasily Volkov and James Demmel. LU, QR and Cholesky factorizations using vector
capabilities of GPUs. Technical Report UCB/EECS-2008-49, EECS Department,
University of California, Berkeley, May 2008.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 47




