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Abstract.

The characteristics of graphics processing units (GPUs), especially their
parallel execution capabilities and fast memory access, render them at-
tractive in many application areas. They promise more than an order of
magnitude speedup over conventional processors for some non-graphics
computations. The use of GPUs in general-purpose computing is becom-
ing a very accepted alternative. In addition, the CUDA programming
model gains acceptance. Each of these arguments make necessary count
with tools that allow to evaluate GPUs.

The performance parameters allow to model an architecture to predict
the execution time of any application with any parallelism level. Fur-
thermore, they are a useful tool to compare different architectures and
determine its advantages and troubles.

This work presents suitable benchmarks to evaluate different perfor-
mance parameters of GPUs. The presented measurements focus on two
issues of GPU performance: computing power and the global memory
bandwidth. Their estimation will allow us determine technical charac-
teristics of GPU and, in consequence, the analysis and optimization of
the performance of applications that could run on actual or future GPUs.

1 Introdution

The GPU (Graphic Processing Unit) was adopted as a new hardware platform to
resolve general-purpose applications. This opens a vast universe of possibilities,
especially for the resolution of massively parallel applications.

For many years, the GPU was used only to accelerate the graphics applica-
tions, such as video games and interactive 3D. Its good performance in this area
joined to its constant and quickly evolution (compared with the general-purpose
microprocessors) and a smaller number of instructions [1, 2], has allowed the
development of domestic supercomputer model cheaper than a PC. This model
can solve certain kind of problems, all of them can be solved applying a mas-
sively parallel computing model with the following characteristics: architecture
multicore, shared memory and multithreaded support [3].
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There are many alternatives of processing on GPU, the most widely used
is the NVIDIA card [4]. For its programming was development CUDA (Com-
pute Unified Device Architecture), a C programming kit that includes a data
communication model and a threads control model. CUDA provides a GPU-
CPU interface [5]. It pretends simplify the programming work through a parallel
programming model [6] and facilitate the threads synchronization and the com-
munication between CPU and GPU [7, 8].

Taking advantages of computational power, low cost, continuous develop-
ment, high memory bandwidth, flexibility and programmability of the GPU;
and despite its limitations and difficulties in resolving any type of application,
it is feasible to use the GPU computation power to solve non-graphics applica-
tion. This computing kind is called GPGPU: General-Purpose computation on
Graphics Processing Units.

This paper is organized as follows, the next section explains the features of
the GPU: architecture and CUDA programming model. Section 3 establishes the
importance of performance metrics and details which parameters we considered
in this work and how we measure them. Finally we show experimental results,
conclusions and future work.

2 Characteristics of GPU

A GPU computing system consists of two basic components, the traditional CPU
and one or more GPUs (Streaming Processor Array). The connection between
CPU and GPU is by mean of PCI Express bus.

The GPU can be considered as a multicores coprocessor ables to support
fine grain parallelism (a lot of threads run in parallel, all of them collaborate in
the solution of the same problem) [4, 9, 10]. GPU is different than other parallel
architectures because it shows flexibility in the local resources allocation (mem-
ory or register) to the threads. In general, a GPU multiprocessor consists of
several streams, each of them has multiple processing units, records and on-chip
memory. Each stream multiprocessor can run a variable number of threads. The
programmer decides how many threads and how they will work. These can be
adjusted to achieve improvements in the system performance.

In this section we detail the GPU features, its hardware and the proposed
programming model. Although most of the GPU on the market have similar
characteristics, in this paper we focus on the architecture and programming
model proposed by NVIDIA [2].

2.1 Architecture

The GPU architecture differs significantly from CPUs in many aspects. The
figure 1 shows how architectures of GPU, typical (figure 1(a)) and modern (figure
1(b)) that are formed by a set of units called Texture/Processors Cluster (TPC),
each of them is made up of several multiprocessors, one texture unit and some
logic control.
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(a) Typical (b) Modern

Fig. 1. GPU Architecture

A multiprocessor or SM (Streaming Multiprocessor) consists of eight (thirty
two in modern GPU) Scalar Processor (SP), sometimes called core, two special
function units for transcendental functions such as sine or cosine, a multithreaded
instruction unit, and on-chip shared and cache memory. The Figure 2 depicts
the two SM architectures.

(a) Typical GPU (b) Modern GPU

Fig. 2. SM Architecture
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Each GPU has own RAM memory, global memory. The connection bus be-
tween GPU and global memory is usually larger than the corresponding at CPU,
it can vary from 64 bits until 768 bits. This property allows to transfer a large
amount of information per unit time between both.

2.2 CUDA Programming Model

The GPU computing system consists of a CPU (host) and one or more GPU
(massively parallel co-processors). Each co-processor applies the Simple Process-
Multiple Data (SPMD) model, all units of computation (thread) running the
same code, not necessarily synchronously, over different data. Every thread
shares the global memory space [6, 7, 11, 12, 5, 8, 10].

The CUDA programming model proposes a model for GPU programming.
It has two main characteristics: the parallel work through concurrent threads
and the memory hierarchy. A CUDA program is written in standard C/C++
extended by several keywords and constructs. The user supplies a single source
program encompassing both host (CPU) and kernel (GPU) code. Each CUDA
program consists of multiple phases that are executed on either the CPU or the
GPU. All phases that exhibit little or no data parallelism are implemented in
the CPU. In opposition, if the phases present much data parallelism, they are
implemented as kernel functions in the GPU. A kernel function defines the code
to be executed by each threads launched in a parallel phase.

There are several restrictions on kernel functions, they cannot: be recursive
neither have static variables declarations or a variable number of arguments.
The communication between CPU and GPU is through API calls. Kernel code
is initiated performing a function call.

Threads in the CUDA model are grouped into thread blocks. All threads in
a block execute on one SM and communicate among them through the shared
memory. Threads in different blocks can communicate through global memory.
Besides shared and global memory, the threads have their local variables. Thread
blocks form a grid. The number of grids, blocks per grid and threads per block
are parameters fixed by the programmer. As they can affect the performance of
the application, can be adjusted.

3 Performance Parameters

If you want to compare two or more computer systems, you need to compare
them through their technical characteristics that can be measured by one or
more parameters. Among the most common parameters are: Instructions per
second (FLOPS or MIPS), Performance per watt and Memory Bandwidth.

There are many technical characteristics or theoretical parameters of GPU
performance completely dependent of the hardware, some of them are:

– Computing power: It is related with the power of processor or set of proces-
sors (ALUs) to make logical or arithmetic operations. It is independent of its
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subsequent ability to write the results in memory. If this parameter measures
integers arithmetic operation is called MIPS, but if it refers to floating-point
arithmetic operation is called FLOPS. In certain cases, this ability to per-
form arithmetic depends on the data type but in the GPU, the processing
power of integer (MIPS) and floating point (FLOPS) are the same [11].

– Calculation Delay: This parameter determines the instructions delay. It cal-
culates since the begin of execution instruction until the end of its processing
through the architecture pipeline.

– Memory Bandwidth: It sets the amount of writes, reads or read-write oper-
ations over a memory type in a certain time. The bandwidth refers to the
maximum capacity of the channel used to transfer data between the proces-
sor and memory. According to the nature of memory, the number of reads
and writes per unit of time may differ substantially.

– Time or Latency of Memory Access: It measures the time between the write
or read request and its carrying out.

Most of the time, their estimations are not easily accomplished by soft-
ware tools (They can be used to establish the potential of some resource: com-
puter, network, program or device). The tests can be quantitative: response
time, MIPS, etc. [13], or qualitative: reliability, scalability, in-interoperability,
etc. Many times, the performance evaluation is made by stress testing. The next
section details the performance indicators considered in this work.

3.1 Estimation of Performance Parameters

Through the performance parameters, we can characterize the architecture and,
consequently, predict the performance of applications in different situations and/or
programming modes. In the practice, the most of obtained values are lower than
those established by the physical environment. This is due to the limitations
and delays imposed by the used hardware technology and the applied program-
ming model. Therefore, they depend on how they use the GPU resources, if they
employ:

– All the SM and every scalar processor of them (it is called All −All).
– All scalar processors of one only SM (One −All).
– All SM and one only scalar processor for each of them (All −One).
– A single scalar processor of one only SM (One −One).

To measure some of the proposed parameters and establish the technical
characteristics of GPU, we developed BEN MyCP 2.0, a benchmark with several
applications. In [14] we established the theoretical parameters and in this work,
we calculate the practical or real parameters of the GPU.

Considering two technical parameters: the computing power and global mem-
ory bandwidth, and each of above four situations, we can determine eight pa-
rameters, they are:

– Computing power of All−All.
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– Computing power of One−All.
– Computing power of All−One.
– Computing power of One−One.
– Global Memory bandwidth of All−All.
– Global Memory bandwidth of One−All.
– Global Memory bandwidth of All−One.
– Global Memory bandwidth of One−One.

In this work, we express the first four parameters in MIPS or FLOPS and
the last four in GBytes by second. In the next sections we explain the features
of applications included in BEN MyCP 2.0 and how the parameters estimation
is made.

3.2 Computing power

This parameter determines the inherent ability of a processor or processors set
to make logical and/or arithmetic operations, regardless to the write of results
in a memory of the hierarchy. We can use it to compare with other architectures.

To measure the computing power of GPU, our work is focused particularly
on the ability to solve floating-point arithmetic operations: FLOPS (It can be
generalized to integer operations, MIPS).

The parallel algorithm must generate a high throughput without the need to
access GPU memory using only records. The developed application performs in-
tensive mathematical operations of multiplication and addition on a SP register.
To achieve reliable results, we avoid the memory access (any type of memory)
until the end when we obtain the final results. The intermediate results are
stored temporarily in the internal registers of each SP. A thread is responsible
to obtain the result of one operation.

Below we analyze the four parameter related with Calculation Capacity.

Computing power of All−All (CpAll−All)

To obtain CpAll−All, we must take account several considerations to avoid:

1. Delays related to the administration and allocation of threads to the SP of
SM (warps). We must ensure the filling of the pipeline of all the SMs.

2. The underutilization of the SMs. Blocks must have at least 32 threads, quan-
tity of threads managed per warp.

In consequence, we launch many blocks and many threads per block to ensure
the maximum parallelism degree and, hence, the use of every SM and all of its
SP. In other words, the application uses the maximum available resources of
GPU.

By all this characteristics, we estimate the computing power of GPU P , ie

CpAll−All = P .
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Calculation Capacity of One−All (CpOne−All)

In this case, the number of blocks is 1. In consequence, as we must avoid the
influence of warps manager, the application has to have the enough parallelism to
eliminate this effect. We achieve it by generating a block whose threads number
is sufficient larger how to fill the pipeline of SM.

This parameter represents the computing power of a SM. With it and above
parameter, it is possible to obtain the SM number of a GPU, ie

‖SM‖ = CpAll−All

CpOne−All

Calculation Capacity of All−One (CpAll−One)

To find this parameter, we have to have many blocks with only one thread.
Considering the restriction 1, it is necessary to generate a lot of blocks to elimi-
nate the influence of warps manager.

Through this parameter, we obtain the wastage factor of SM by the no-
vectorial use of hardware. This non-dimensional parameter indicates the number
of parallel pipeline. It can be expressed as

NPPipe =
CpAll−All

CpAll−One

In other words, NPPipe can be viewed as missed computing power owing to
the using of all SM as scalar processors.

Calculation Capacity One −One (CpOne−One)

For this case, the number of blocks and threads per blocks are equal to
1. From it and the above parameters, we can express the pipeline depth of
architecture that is defined by the next expression:

LPipe =
CpAll−One×CpOne−All

CpOne−One×CpAll−All

With these four parameters, we obtain the intrinsic characteristics of GPU
hardware such as: its Calculus power(P ), the SM number, the number of parallel
pipeline (NPPipe), and the pipeline depth (LPipe). The last three describe the
organizational structure of the hardware.
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3.3 Memory Transfer Rate

This parameter determines the amount of write, read or read-write that can be
made at any position of a memory type in a time instant. Also, the bandwidth
refers to the maximum capacity of the channel used for data transfer of bus that
connects the processor with the memory. Generally, the values obtained in the
practice are less than the established by the physical environment. The most
of the time, this is due to the limitations and delays imposed by the hardware
technology used.

In CUDAmodel, as mentioned above, the threads can access different types of
memory during execution of a kernel. The memory access can be to: private local
memory, shared memory or/and the global memory. In this work, we measure
the global memory rate of the read-write operations.

Transfer Rate of Read-Write Operation on Global Memory

An operation of read/write involves a global memory access by each of these
operations. To measure the speed of read/write operations on global memory
of GPU, we implement an algorithm that reads a particular memory location,
performs a simple arithmetic operation and, finally, writes the result in the same
memory position. These three operations are made in order by a thread on a
memory location.

Such as the CUDA/C compiler optimizes the code we have to avoid it. For this
particular case and in presence of read-arithmetic-write operations, the compiler
avoids the first (read) and works directly with the processor registers displaying
an unreal speed. To resolve it, we employ large memory blocks as to avoid the
use of the registers of the GPU and to force it to read and the write on the
global memory.

Below we analyze the four parameter related with Global Memory Band-
width.

Global Memory Bandwidth of All−All (GMbAll−All)

When many blocks and threads per block are launched, we can ensure a
continuous data transfer to memory and reduce the high memory latency. Also,
if the blocks are enough large (there are many threads by each), each thread
makes individual transfers. The set of threads transfers made in parallel would
use the maximum bandwidth of the memory channel.

As the continuous transfer to memory, many blocks and many threads per
block are ensure, we estimate the max memory bandwidth (B) of GPU, i.e.:

GMbAll−All = B.
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Global Memory Bandwidth of One−All (GMbOne−All)

This parameter is obtained when the number of blocks is equal to 1. To
guarantee that each thread make transfers individually, it is necessary ensure a
block size sufficiently large (many threads). It is the same case that the above
parameter.

It indicates the maximum bandwidth of memory that can reach a SM by read-
write operations. From this parameter and the above is possible to estimate the
necessary number of simultaneous full blocks (max number of threads per block)
that occupy the whole bandwidth of memory (NMINBl), it is

NMINBl = GMbAll−All

GMbOne−All

Global Memory bandwidth of All −One (GMbAll−One)

To obtain GMbAll−One, we execute the algorithm on many blocks of a single
thread each. Although there are many simultaneous blocks, there is only one
thread per block; in consequence it is impossible to exploit the max memory
bandwidth.

The max benefit of memory bandwidth of GPU architectures is achieved
when the read or/and write operations of parallel threads are made in structured
form: with only one memory access we can read or/and write simultaneously
every processed values by the large set of threads, it is named memory alignment
or memory coalescing. The alignment constraint varies according to the hardware
architecture, for older architectures are stricter [15]. Therefore, it is possible to
determine the waste factor of the memory bus (W ) when read-write no coalescing
are done. It is achieved by

WMemory Bus =
GMbAll−All

GMbAll−One

Global Memory bandwidth of One −One (GMbOne−One)

In this case, the number of blocks and number of threads per blocks are equal
1. With it and GMbOne−All, we can calculate how long the thread is delayed
during its processing on GPU, i.e.

TThread Delay = GMbAll−One

GMbOne−One
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With these four parameters, we can obtain the intrinsic characteristics of
GPU global memory such as: its Bandwidth (B), the min number of necessary
and simultaneous blocks to occupy the whole bandwidth of memory (NMINBl),
the waste factor of the memory bus (WMemory Bus), and time that a thread is
delayed during its processing on GPU (TThread Delay).

4 Experimentals Results

In this section we show and analyze the results for every parameters proposed.
The analysis was made for three generations of GeForce GPU: GTS 250, GTX
260 and the GTX 470 whose characteristics are:

GTS 250 GTX 260 GTX 470

Global Memory 1073020928 bytes 938803200 bytes 1341325312 bytes
SM 16 27 14
SP 128 216 448

Clock rate shader 1836 MHz 1400 MHz 1215 MHz
Clock rate gpu 740 MHz 666 MHz 607 MHz

Clock rate memory 1100 MHz 1150 MHz 1674 MHz
Type of Memory Bus 256 bit DDR3 448 bit DDR3 320 bit GDDR5

Each reported value is the averages of many executions of corresponding
algorithm that detailed above.

The next table shows the average values obtained of four parameter of com-
puting power.

GTS 250 GTX 260 GTX 470

CpAll−All 436.344289 GFLOPS 562.329588 GFLOPS 503.849162 GFLOPS

CpOne−All 27.308304 GFLOPS 20.882264 GFLOPS 36.189371 GFLOPS

CpAll−One 13.608844 GFLOPS 17.550189 GFLOPS 7.032963 GFLOPS

CpOne−One 0.170045 GFLOPS 0.108546 GFLOPS 0.062842 GFLOPS

The CpAll−All is closer to the theorical computing power (P ), which can be
get for GTS250 and GTX260 by

P = 2× shader frecuency × ‖SP‖

For GTX 470, we used operations 24-bit MAD without optimization for mod-
ern hardware [11], hence the theorical computing power can express as
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P = shader frecuency × ‖SP‖

The max computing power (CpAll−All = P ) for GTS 250, GTX 260 and
GTX 470 architectures are achieved when there are at least 64, 128 and 1024
threads per block respectively.

In the case of second parameter, CpOne−All, we determined the block dimen-
sion minimum to keep busy the pipe. This has to be at least of 160, 224 and 544
for GTS 250, GTX 260 and GTX 470 architectures respectively.

From these four parameters, we can obtain different technical characteristics
of GPU. The next table displays three technical features: P , SM number, NPPipe

and LPipe.

GTS 250 GTX 260 GTX 470

P 436.344289 GFLOPS 562.329588 GFLOPS 503.849162 GFLOPS

‖SM‖ 16 27 14
NPPipe 32 32 32× 2.25
LPipe 5 6 8

Regarding of this four GPU features, P is the main performance Indicator
of architecture. Instead the others three will allow us to establish which archi-
tecture is the best suited to solve a particular application. For example, if the
application has a low degree of parallelism, a GPU with fewer resources will be
more appropriate. Besides, as in the new architectures not only P increases but
NPPipe and LPipe also, these become inadequate when the applications are not
highly parallel.

Below we present the results of parameters related to memory bandwidth.
The next table shows the average values obtained of four parameters analyzed
for transfer rate of read-write operation on global memory (GMbX−X).

GTS 250 GTX 260 GTX 470

GMbAll−All 57.312697 GB/s 104.866219 GB/s 108.394003 GB/s
GMbOne−All 10.443662 GB/s 8.520936 GB/s 29.362377 GB/s
GMbAll−One 2.719361 GB/s 3.878613 GB/s 9.640949 GB/s
GMbOne−One 0.023726 GB/s 0.020135 GB/s 0.098046 GB/s

The first parameter is one magnitude lower than theoretical value expected
(B) that could be calculated by the following expression:

B = clock frecuency×Width of memory bus×2

8
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where the factor 2 obeys to that the transfer is ddr (Double Data Rate) [16],
and 8 is to express the result in bytes.

The max memory bandwidth for read-write operations is achieved when the
number of threads per block is greater or equal than 64, 128 and 192 for the
GTS 250, GTX 260 and GTX 470 architectures respectively. In the case of second
parameter, the max value is obtained if the threads number of block is greater
or equal than 512, 512, 640 for of three architectures considered in this work
respectively.

Through these four parameters related to memory bandwith of read-write
operations, we can obtain different technical characteristics of GPU. The next
table displays four technical features: B,NMINBl, WMemory Bus, TThread Delay .

250 GTX GTX 260 GTX 470

B 57.312697 GB/s 104.866219 GB/s 108.394003 GB/s
NMINBl 5.49 12.3 3.69

WMemory Bus 21 27 11.24
TThread Delay 114.6 192.5 98.37

B, WMemory Bus and TThread Delay depend exclusively on of the memory
architecture.NMINBl also is influenced by the GPU architecture and technology
of global memory. If B is bigger then the memory performance is better, the same
is valid when NMINBl, WMemory Bus and TThread Delay are lower. In the case
of GTX 470 has better performance in any type of applications because it uses
global memory kind faster and with lower latencies.

5 Conclusions, Remarks and Future Work

The GPU is a massively parallel architecture, it has a high throughput because
its capacity of parallel processing for thousands of threads. With each new gen-
eration of GPU, new parallel processing capabilities are incorporated.

In this work we showed how, through a simple methodology, we can determine
eight performance parameters of GPU related to computing power and global
memory transfer rate. We presented the results of each of them on different
generations of GPUs. The first four parameters characterize the architecture of
the GPU and the last four correspond to the GPU memory architecture.

Such as the eight parameters offer enough information, we can determine
the technical features of the architectures discussed and know their advantages
and troubles. All of them are very important and necessary when we want to
estimate the performance of any application on GPU.

In the future, we pretend to extend the set of performance parameters and
apply the proposed analysis to others GPU manufacturers such as AMD-ATI.
Further, it is important verify if presented method can be an universal method
to determine features of massively parallel architectures.
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