
Software Design and Complexity in Effective
Algebraic Geometry

Andrés Rojas Paredes
Departamento de Computación, Facultad de Ciencias Exactas y Naturales,

Universidad de Buenos Aires.

Acknowledgment. The author expresses his gratitude to Joos Heintz,
without him this article would not have been possible.

Abstract. We introduce a new, software architecture based computa-
tion model for Scientific Computing. Its relevance becomes illustrated
by the precise formulation and solution of a more than thirty years open
complexity problem in Effective Algebraic Geometry (elimination the-
ory).

1 Introduction

In this paper we are going to show, by means of a mathematical computa-
tion model which mimics the notion of a programmable algorithm in Scientific
Computing and a relevant example from polynomial equation solving over the
complex numbers C (i.e. from geometric elimination theory), that well motivated
and natural architectural restrictions on procedures may have devastating “side
effects” on the run time complexity. This conclusion may also be expressed in
terms of a trade–off between two (boolean) quality attributes: on one hand we
have an architectural requirement and on the other a complexity class. The main
issue of this paper is the use of Software Engineering as a metatheory which mo-
tivates the specific computation model we are going to explain in Section 2. This
model (which is alternative to [2]) becomes combined in Section 3 with a novel
mathematical technique, by the way related to singularity theory in algebraic
geometry, in order to solve a thirty years old problem in algebraic complexity
theory (see e.g. [12], [13]): we show that in circuit based effective elimination
theory the elimination of a single existential quantifier block in the first order
theory of algebraically closed fields of characteristic zero is intrinsically hard (i.e.
requires in worst case exponential time). This contrasts with the fact that this
problem can be solved in pseudopolynomial time (the corresponding procedure
is called Kronecker algorithm; see [9],[6],[8],[10] for details). This is undoubtedly
theoretical research. But there is also a practical aim behind that.

Consider the process in software design where a software architecture is de-
veloped in order to solve a certain computational problem which is supposed to
be given by a formal specification. Assume also that one of the non–functional
requirements of the software design project consists of a restriction on the run
time computational complexity of the program which is going to be developed
(this was the case during the implementation of the Kronecker algorithm by G.
Lecerf, see [15]). The software engineer may wish to know at an early stage of the

1

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 242

design process whether the decisions already taken by him will not violate at the
end the non–functional requirements he has to satisfy. Our practical aim is to
provide the software engineer with an efficient tool which allows him to answer
the question whether his software design process is entering at some moment in
conflict with the given complexity requirement. If this is the case, the software
engineer will be able to change at this early stage his design and may look for
an alternative software architecture.

In the rest of the paper we shall use freely notions and notations from alge-
braic geometry and algebraic complexity theory which, as far that they are not
explained or introduced in Appendix A and B, are all standard (see for example
[19] and [3]).

2 A software architecture based computation model

The aim of this section is to introduce and motivate a practically feasible, soft-
ware architecture based model of (branching parsimonious) computation using
the circuit representation of rational functions as fundamental data type. In this
computation model, a procedure or routine will accept a circuit as input and
produce another circuit as output. Since the basic building blocks of our com-
putations with circuits are supposed to be branching–free (see Section 2.2) and
circuits themselves may be interpreted as computations, the circuits used as data
types in our model should be branching–free too. This leads us to introduce and
discuss the concept of a parameterized arithmetic circuit. However, branchings
are sometimes unavoidable, but frequently they may be replaced by limit pro-
cesses. In order to capture this situation, we shall also introduce and discuss the
notion of a robust parameterized arithmetic circuit.

2.1 Parameterized arithmetic circuits and their semantics

Let us fix natural numbers n and r, indeterminates X1, . . . , Xn and a non–empty
constructible subset M of Cr. By π1, . . . , πr we denote the restrictions to M of
the canonical projections Cr → C1.

A (byM) parameterized arithmetic circuit β (with basic parameters π1, . . . , πr
and inputs X1, . . . , Xn) is a labelled directed acyclic graph (labelled DAG) sat-
isfying the following conditions:
each node of indegree zero is labelled by a scalar from C, a basic parameter
π1, . . . , πr or a input variable X1, . . . , Xn. Following the case, we shall refer to
the scalar, basic parameter and (standard) input nodes of β. All others nodes
of β have indegree two and are called internal. They are labelled by arithmetic
operations (addition, subtraction, multiplication, division). A parameter node of
β depends only on scalar and basic parameter nodes, but not on any input node
of β. An addition or multiplication node whose two ingoing edges depend on
an input is called essential. The same terminology is applied to division nodes
whose second argument depends on an input. Moreover, at least one circuit node

2

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 243

becomes labelled as output. Without loss of generality we may suppose that all
nodes of outdegree zero are outputs of β.

We consider β as a syntactical object which we wish to equip with a cer-
tain semantics. In principle there exists a canonical evaluation procedure of β
assigning to each node a rational function ofM×Cn which, in case of a param-
eter node, may also be interpreted as a rational function of M. We call such a
rational function an intermediate result of β.

The evaluation procedure may fail if we divide at some moment an interme-
diate result by another one which vanishes on a Zariski dense subset of a whole
irreducible component of M× Cn. If this occurs, we call the labelled DAG β
inconsistent, otherwise consistent.

From now on we shall always assume that β is a consistent parameterized
arithmetic circuit. The intermediate results associated with output nodes will
be called final results of β.

We call an intermediate result associated with a parameter node a param-
eter of β and interpret it generally as a rational function of M. A parameter
associated with a node which has an outgoing edge into a node which depends
on one of the inputs of β is called essential. In the sequel we shall refer to the
constructible set M as the parameter domain of β.

We consider β as a syntactic object which represents the final results of
β, i.e. the rational functions of M× Cn assigned to its output nodes. In this
way becomes introduced an abstraction function which associates with β these
rational functions. This abstraction function assigns therefore to β a rational
map M× Cn 99K Cq, where q is the number of output nodes of β. On its turn,
this rational map may also be understood as a (by M) parameterized family of
rational maps Cn 99K Cq.

Now we suppose that the parameterized arithmetic circuit β has been equipped
with an additional structure, linked to the semantics of β. We assume that for
each node ρ of β there is given a total constructible map M× Cn → C1 which
extends the intermediate result associated with ρ. Therefore, if β has K nodes,
we obtain a total constructible map Ω : M× Cn → CK which extends the ra-
tional map M× Cn 99K CK given by the labels at the indegree zero nodes and
the intermediate results of β.

Definition 1 (Robust circuit). The pair (β,Ω) is called a robust parameter-
ized arithmetic circuit if the constructible map Ω is geometrically robust.

For the notion of a rational, a constructible and a geometrically robust map
see Appendix A. We shall make the following observation to Definition 1.

Suppose that (β,Ω) is robust. Then the constructible map Ω :M×Cn → Ck
is geometrically robust and hence also by Appendix A, Proposition 2 hereditary.
Moreover, there exists at most one geometrically robust constructible map Ω :
M× Cn → CK which extends the rational map M× Cn 99K CK introduced
before. Therefore we shall apply the term “robust” also to the circuit β.

Being robust becomes now an architectural requirement for the circuit β
and for its output. Robustness implies well behavedness under restrictions as

3

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 244

described in Section 2.2. Let us formulate this more precisely in the context of
parameterized arithmetic circuits.

Let N be a constructible subset of M and suppose that (β,Ω) is robust.
Then the restriction Ω|N×Cn of the constructible map Ω to N × Cn is still a
geometrically robust constructible map.

This implies that (β,Ω) induces a by N parameterized arithmetical circuit
βN such that (βN , Ω|N×Cn) becomes robust. We call (βN , Ω|N×Cn), or simply
βN , the restriction of (β,Ω) or β to N .

We say that the parameterized arithmetic circuit β is totally division–free if
any division node of β corresponds to a division by a non–zero complex scalar.

We call β essentially division–free if only parameter nodes are labelled by
divisions. Thus the property of β being totally division–free implies that β is es-
sentially division–free, but not vice versa. Moreover, if β is totally division-free,
the rational map given by the intermediate results of β is polynomial and there-
fore a geometrically robust constructible map. Thus, any by M parameterized,
totally division–free circuit is in a natural way robust.

In the sequel we shall need the following elementary fact.

Lemma 1. Suppose that the parameterized arithmetic circuit β is geometrically
robust. Then all intermediate results of β are polynomials in X1, . . . , Xn over
the C–algebra of geometrically robust constructible functions defined on M.

The statement of this lemma should not lead to confusions with the notion
of an essentially division–free parameterized circuit. We say just that the inter-
mediate results of β are polynomials in X1, . . . , Xn and do not restrict the type
of arithmetic operations contained in β.

To our parameterized arithmetic circuit β we may associate different com-
plexity measures and models. In this paper we shall mainly be concerned with
sequential computing time, measured by the size of β. Here we refer with “size”
to the number of internal nodes of β which count for the given complexity mea-
sure. Our basic complexity measure is the non–scalar one (also called Ostrowski
measure) over the ground field C. This means that we count, at unit costs,
only essential multiplications and divisions (involving basic parameters or input
variables in both arguments in the case of a multiplication and in the second
argument in the case of a division), whereas C–linear operations are free (see [3]
for details).

We describe now how, based on its semantics, the given parameterized arith-
metic circuit β may be rewritten into a new circuit which computes the same
final results as β.

The resulting rewriting procedure will neither be unique and nor generally
confluent. For his easiness, the reader may suppose that there is given an (effi-
cient) algorithm which allows identity checking between intermediate results of
β. However, we shall not make explicit reference to this assumption.

Suppose that the parameterized arithmetic circuit β computes at two differ-
ent nodes, say ρ and ρ′, the same intermediate result. Assume first that ρ neither
depends on ρ′, nor ρ′ on ρ. Then we may erase ρ′ and its two ingoing edges (if

4

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 245

ρ′ is an internal node) and draw an outgoing edge from ρ to any other node of
β which is reached by an outgoing edge of ρ′. If ρ′ is an output node, we label
ρ also as output node. Observe that in this manner a possible indexing of the
output nodes of β may become changed but not the final results of β themselves.

Suppose now that ρ′ depends on ρ. Since the DAG β is acyclic, ρ does not
depend on ρ′. We may now proceed in the same way as before, erasing the node
ρ′.

Let β′ be the parameterized arithmetic circuit obtained, as described before,
by erasing the node ρ′. Then we call β′ a reduction of β and call the way we
obtained β′ from β a reduction step. A reduction procedure is a sequence of
successive reduction steps.

One sees now easily that a reduction procedure applied to β produces a new
parameterized arithmetic circuit β∗ (also called a reduction of β) with the same
basic parameter and input nodes, which computes the same final results as β
(although their possible indexing may be changed). Moreover, if β is a robust
parameterized circuit, then β∗ is robust too. Observe also that in the case of
robust parameterized circuits our reduction commutes with restriction.

Introducing variables to denote non–negative integers and vectors of them,
robust parameterized arithmetic circuits, their nodes, their parameter domains,
their parameter instances, their input variable vectors and instances of input
variable vectors in suitable affine spaces, we may built a many sorted first order
specification language L for parameterized arithmetic circuits. The non–logical
symbols of L express the arithmetic operations in polynomial rings, the edge
relation in DAG’s, equality, node membership to a circuit or membership to a
parameter domain or being an input or output of a given circuit β, etc.

The semantics of the specification language L is determined by the universe
of all robust parameterized arithmetic circuits. The specification language L will
allow us to apply Hoare logics to the computation model we are now going to
develop in Section 2.2 and 2.3.

2.2 A branching–free computation model

In this section we shall distinguish sharply between the notions of input variable
and parameter and the corresponding categories of circuit nodes.

Input variables called “standard”, will occur in parameterized arithmetic cir-
cuits and generic computations. The input variables of generic computations will
appear subdivided in sorts, namely as “parameter”, “argument” and “standard”
input variables.

Our branching–free computation model will assume different shapes, each
shape being determined by a finite number of a priori given discrete (i.e. by tuples
of natural numbers indexed) families of generic computations (see Appendix B
for this notion). The labels of the inputs of the ordinary arithmetic circuits which
represent these generic computations will become subdivided into parameter,
argument and standard input variables. We shall use the letters like U,U ′, U ′′, . . .
and W,W ′,W ′′ to denote vectors of parameters, Y, Y ′, Y ′′, . . . and Z,Z ′, Z ′′ to

5

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 246

denote vectors of argument and X,X ′, X ′′, . . . to denote vectors of standard
input variables.

We shall not write down explicitly the indexations of our generic computa-
tions by tuples of natural numbers. Generic computations will simply be distin-
guished by subscripts and superscripts, if necessary.

Ordinary arithmetic circuits of the form

RX1(W1;X(1)), RX2(W2;X(2)), . . .

R′X1
(W1′ ;X

(1′)), R′X2
(W2′ ;X

(2′)), . . .
.

represent a first type of a discrete family of generic computations (for each vari-
able X1, X2, . . . , Xn, . . . we suppose to have at least one generic computation).
Other types of families of generic computations are of the form

R+(W ;U, Y ;X), R+(W ′;U ′, Y ′;X ′), R+(W ′′;U ′′, Y ′′;X ′′) . . .
R./(W ;U, Y ;X), R./(W ′;U ′, Y ′;X ′), R./(W ′′;U ′′, Y ′′;X ′′) . . .
Radd(W ;Y, Z;X), Radd(W

′;Y ′, Z ′;X ′), Radd(W
′′;Y ′′, Z ′′;X ′′) . . .

Rmult(W ;Y,Z;X), Rmult(W
′;Y ′, Z ′;X ′), Rmult(W

′′;Y ′′, Z ′′;X ′′) . . .

and

Rdiv(W ;Y,Z;X), Rdiv(W
′;Y ′, Z ′;X ′), Rdiv(W

′′;Y ′′, Z ′′;X ′′)

Here the subscripts refer to addition of, and multiplication or division by a
parameter (or scalar) and to essential addition, multiplication and division. A
final type of families of generic computations is of the form

R(W ;Y ;X), eR′(W ′;Y ′;X ′), eR′′(W ′′;Y ′′;X ′′), . . .

We recall from the beginning of this section that the objects handled by the rou-
tines of any shape of our computation model will always be robust parameterized
arithmetic circuits. The inputs of these circuits will only consist of standard vari-
ables.

From now on we have in mind a previously fixed shape when we refer to
our computation model. We start with a given finite set of discrete families of
generic computations which constitute a shape as described before.

A fundamental issue is how we recursively transform a given input circuit into
another one with the same parameter domain. During such a transformation we
make an iterative use of previously fixed generic computations. On their turn
these determine the corresponding recursive routine, say A, of our computation
model.

As input for A let be given a robust parameterized arithmetic circuit β. We
suppose that we have already chosen for each node ρ, which depends at least on
one of the input variables X1, . . . , Xn, a generic computation

R
(ρ)
Xi

(Wρ;X
(ρ)), R

(ρ)
+ (Wρ;Uρ, Yρ;X

(ρ)), R(ρ)
./

(Wρ;Uρ, Yρ;X
(ρ)),

R
(ρ)
add(Wρ;Yρ, Zρ;X

(ρ)), R
(ρ)
mult(Wρ;Yρ, Zρ;X

(ρ)), R
(ρ)
div(Wρ;Yρ, Zρ;X

(ρ)),

6

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 247

and that this choice was made according to the label of ρ, namely Xi, 1 ≤
i ≤ n, or addition of, or multiplication or division by an essential parameter, or
essential addition, multiplication or division. Here we suppose that Uρ is a single
variable, whereas Wρ, Yρ, Zρ and X(ρ) may be arbitrary vectors of variables.

Furthermore we suppose that we have already precomputed for each node ρ
of β, which depends at least on one input, a vector wρ of geometrically robust
constructible functions defined onM. If ρ is an input node we assume that wρ is
a vector of complex numbers. Moreover, we assume that the length of wρ equals
the length of the variable vector Wρ. We call the entries of wρ the parameters at
the node ρ of the routine A applied to the input circuit β.

We are now going to develop the routine A step by step. The routine A
takes over all computations of β which involve only parameter nodes, without
modifying them. Then A replaces each node ρ of β which is labelled by an input

variable Xi, 1 ≤ i ≤ n, by the ordinary arithmetic circuit R
(ρ)
Xi

(wρ;X
(ρ)) over C

which is obtained by substituting in the generic computation R
(ρ)
Xi

(Wρ;X
(ρ)) for

the vector of parameter variables Wρ the vector of complex numbers wρ.
Consider now an arbitrary internal node ρ of β which depends at least on one

input. The node ρ has two ingoing edges which come from two other nodes of β,
say ρ1 and ρ2. Suppose that the routine A, on input β, has already computed
two results, namely Fρ1 and Fρ2 , corresponding to the nodes ρ1 and ρ2. Suppose
inductively that these results are vectors of polynomials depending on those
standard input variables that occur in the vectors of the form X(ρ′), where ρ′ is
any predecessor node of ρ. Furthermore, we assume that the coefficients of these
polynomials constitute the entries of a geometrically robust, constructible map
defined onM. Finally we suppose that the lengths of the vectors Fρ1 and Yρ (or
Uρ) and Fρ2 and Zρ coincide.

The parameter vector wρ of the routine A forms a geometrically robust,
constructible map defined onM, whose image we denote by Kρ. Observe that Kρ
is an irreducible, constructible subset of an affine space of the same dimension as
the length of the vectors wρ and Wρ. Denote by κρ the vector of the restrictions
to Kρ of the canonical projections of this affine space. We consider Kρ as a
new parameter domain with basic parameters κρ. For the sake of simplicity we
suppose that the node ρ is labelled by an essential multiplication. Thus the
corresponding generic computation has the form:

R
(ρ)
mult(Wρ;Yρ, Zρ;X

(ρ)). (1)

Let R
(ρ)
mult(κρ, Yρ, Zρ, X

(ρ)) be the by Kρ parameterized arithmetic circuits
obtained by substituting in the generic computation (1) for the vector of param-
eter variables Wρ the basic parameters κρ. We shall now make at the node ρ the
following requirement on the routine A applied to the input circuit β:

(A) The by Kρ parameterized arithmetic circuit which corresponds to the current
case, namely

R
(ρ)
mult(κρ;Yρ, Zρ;X

(ρ)),

should be consistent and robust.

7

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 248

Observe that the requirement (A) is automatically satisfied if all the generic
computations of our shape are realized by totally division–free ordinary arith-
metic circuits.

Assume now that the routine A applied to the circuit β satisfies the require-
ment (A) at the node ρ of β.

Recall again that we assumed earlier the vectors Fρ1 and Yρ and Fρ2 and Zρ
having the same length. Joining to the generic computation

R
(ρ)
mult(Wρ;Yρ, Zρ;X

(ρ))

at Wρ, Yρ and Zρ the previous computations of wρ, Fρ1 and Fρ2 we obtain also a
parameterized arithmetic circuit with parameter domainM, whose final results
are the entries of a vector which we denote again by Fρ.

One deduces easily from our assumptions on wρ, Fρ1 and Fρ2 and from the
requirement (A) in combination with Lemma 1, that the resulting parameterized
arithmetic circuit is consistent and robust. The other possible labellings of the
node ρ by arithmetic operations are treated similarly. In particular, in case that
ρ is an input node labelled by the variable Xi, 1 ≤ i ≤ n, the requirement (A)

says that the ordinary arithmetic circuit R
(ρ)
Xi

(wρ;X
(ρ)) is consistent and that all

its intermediate results are polynomials in X(ρ) over C (although R
(ρ)
Xi

(wρ;X
(ρ))

may contain divisions).
We call the recursive routine A (on input β) well behaved under restrictions if

the requirement (A) is satisfied at any node ρ of β which depends at least on one
input. If the routine A is well behaved under restrictions, then A transforms step
by step the input circuit β into another robust arithmetic circuit, denoted by
A(β), with parameter domain M. As a consequence of the recursive structure
of A(β), each node ρ of β generates a subcircuit of A(β) which we call the
component of A(β) generated by ρ. The output nodes of each component of
A(β) form the hypernodes of a hypergraph HA(β) whose hyperedges are given
by the connections of the nodes of A(β) contained in distinct hypernodes of
HA(β). The hypergraph HA(β) may be shrinked to the DAG structure of β and
therefore we denote the hypernodes of HA(β) in the same way as the nodes of
β. Notice that well behavedness under restrictions is in fact a property which
concerns the hypergraph HA(β).

We call A a (recursive) parameter routine if A does not introduce new stan-
dard variables. In the previous recursive construction of the routine A, the pa-
rameters at the nodes of β, used for the realization of the circuit A(β), are
supposed to be generated by recursive parameter routines.

We are now going to consider another requirement of our recursive routine
A, which will lead us to the notion of isoparametricity of A.

Let us turn back to the previous situation at the node ρ of the input circuit
β. Notations and assumptions will be the same as before. From Lemma 1 we
deduce that the intermediate result of β associated with the node ρ, say Gρ, is a
polynomial in X1, . . . , Xn whose coefficients form the entries of a geometrically
robust, constructible map defined on M, say θρ. Let Tρ be the image of this
map and observe that Tρ is a constructible subset of a suitable affine space. The

8

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 249

intermediate results of the circuit A(β) at the elements of the hypernode ρ of
HA(β) constitute a polynomial vector which we denote by Fρ.

We shall now make another requirement at the node ρ on the routine A
applied to the input circuit β:

(B) There exists a geometrically robust, constructible map σρ defined on Tρ such
that σρ ◦ θρ constitutes the coefficient vector of Fρ.

We call the recursive routine A isoparametric (on input β) if requirement
(B) is satisfied at any node ρ of β which depends at least on one input.

The isoparametricity of recursive routines will constitute a cornerstone of the
argumentation we are going to use in Section 3. Therefore we shall now comment
this notion.

Since the first order theory of C admits quantifier elimination, one sees eas-
ily that, with the previous notations, the existence of a constructible map σρ
satisfying condition (B) is equivalent with the following condition:

(i) for any two parameter instances u1 and u2 of M the assumption

Gρ(u1, X1, . . . , Xn) = Gρ(u2, X1, . . . , Xn)

implies
Fρ(u1, X

′) = Fρ(u2, X
′).

This justifies the term “isoparametric”.
Observe that the geometrically robust constructible map σρ (which depends

on β as well as on ρ) is not an artifact, but emerges naturally from the recur-
sive construction of a circuit semantic within the paradigm of object oriented
programming. To explain this, suppose that A is a isoparametric recursive rou-
tine of our model and that we apply A to the robust parameterized arithmetic
circuit β. Let ρ again be a node of β which depends at least on one input. Let

u be a parameter instance of M and denote by β(u), G
(u)
ρ , A(β)(u) and F

(u)
ρ

the instantiations of β, Gρ, A(β) and Fρ at u. Then the intermediate results of

A(β)(u) contained in F
(u)
ρ depend only on the intermediate result G

(u)
ρ of β(u)

and not on the parameter instance u itself. In this spirit we may consider the

sets Γρ := {G(u)
ρ e; eu ∈ M} and Φρ := {F (u)

ρ e; eu ∈ M} as abstract data types
and β and A(β) as syntactic descriptions of two abstraction functions which

associate to any concrete object u ∈ M the abstract objects G
(u)
ρ and F

(u)
ρ ,

respectively. The identity map idM :M→M induces now an abstract function
[17] from Γρ to Φρ, namely σρ : Γρ → Φρ. In this terminology, idM is just an
implementation of σρ. If we now consider that each recursive step of the rou-
tine A on input β has to be realized by another routine of the object oriented
programming paradigm, we arrive to a situation where a geometrically robust
constructible map σρ : Γρ → Φρ necessarily arises.

Another point of view is the following:
By assumption the circuit β is an arbitrary admissible input for the given

recursive routine A. We say that the specification language L introduced in

9

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 250

Section 2.2 is expressive relative to the routine A if for any node ρ of β the
geometrically robust constructible map σρ is definable in L. This means that
there exists a vector of terms of the language L, which depend all on the same
circuit and node variables, such that this vector of terms, interpreted at the node
ρ of the input circuit β, becomes the map σρ.

If L is expressive relative to A and β and A(β) satisfy a precondition and
a postcondition formulated in the language L, then the correctness of A can be
proved using Hoare Logics [1].

Suppose that the recursive routine A is well behaved under restrictions. We
call A well behaved under reductions (on input β) if A(β) satisfies the following
requirement:

Let ρ and ρ′ be distinct nodes of β which compute the same intermediate
results. Then the intermediate results at the hypernodes ρ and ρ′ of HA(β)

are identical. Mutatis mutandis the same is true for the computation of
the parameters of A at any node of β.

Assume that the routine A is recursive and well behaved under reductions.
One verifies then easily that, taking into account the hypergraph structureHA(β)

of A(β), any reduction procedure on β may canonically be extended to a reduc-
tion procedure of A(β).

From the point of view of software architecture, well behavedness under re-
ductions is an absolutely natural quality attribute for recursive routines, because
it authorizes simplification of “code” (represented by circuits) without any side
effects. This motivates the following statement.

Lemma 2. Let A be a recursive routine that behaves well under restrictions and
reductions. Then A is isoparametric.

One sees easily that the iterated application, i.e. composition, of isoparamet-
ric recursive routines which are well behaved under restriction leads again to
such routines. The same happens with the union of such routines, which con-
sists in the juxtaposition of their outputs (on the same input). More caution
is at order when we consider the join of two isoparametric recursive routines
which behave well under restrictions (join mimics the composition of functions).
In this case the isoparametricity condition (B) becomes only satisfied at output
nodes of the input circuit β. In this sense the join of two recursive isoparametric
routines which are well behaved under restrictions is still output isoparametric.

Let R(W ;Y ;X) be a generic computation of our shape list and w a com-
plex vector of the same length as W such that R(w;Y ;X) is consistent and
robust. If the vector of final results of A(β) has the same length as Y , we may
join the circuits A(β) and R(w;Y ;X) at Y in order to construct a new robust
parameterized arithmetic circuit.

Finally we may obtain any elementary routine of our branching–free com-
putation model by the iterated application of all these construction patterns, in
particular the last one, recursion, composition, union and join. Of course, the

10

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 251

identity and any constant routine belong also to our model. The set of all these
routines is therefore closed under these constructions and operations.

We call an elementary routine essentially division–free if it admits as input
only essentially division–free, robust parameterized arithmetic circuits with ir-
reducible parameter domain and all generic computations used to compose it
are essentially division–free. The outputs of essentially division–free elementary
routines are always essentially division–free circuits. The set of all essentially
division–free elementary routines is also closed under the mentioned construc-
tions.

We have seen that elementary routines are, in a suitable sense, well behaved
under restrictions. In the following statement we formulate explicitly the prop-
erty of an elementary routine to be output isoparametric. This will be funda-
mental for our complexity considerations in Section 3.

Proposition 1. Let A be an elementary routine of our branching–free compu-
tation model. Then A is output isoparametric. More explicitly, let β be a robust,
parameterized arithmetic circuit with parameter domain M. Suppose that β is
an admissible input for A. Let θ be a geometrically robust, constructible map
defined on M such that θ represents the coefficient vector of the final results of
β and let T be the image of θ. Then T is a constructible subset of a suitable
affine space and there exists a geometrically robust, constructible map σ defined
on T such that the composition map σ ◦ θ represents the coefficient vector of the
final results of A(β).

2.3 The extended computation model

We are now going to extend our simplified branching–free computation model
of elementary routines by a new model consisting of algorithms and procedures
which may contain some limited branchings. Our description of this model will
be rather informal. An algorithm will be a dynamic DAG of elementary routines
which will be interpreted as pipes. At the endpoints of the pipes, decisions may
be taken which involve only identity tests between robust constructible func-
tions defined on the parameter domain under consideration. By their nature,
the results of these identity tests are output isoparametric. The output of such
an identity test is a boolean vector which determines the next elementary rou-
tine (i.e. pipe) to be applied to the output circuit produced by the preceding
elementary routine (pipe). This gives now rise to a extended computation model
which contains branchings. These branchings depend on a limited type of output
isoparametric decisions, namely the mentioned identity tests. We need to include
this type of branchings in our extended computation model in order to capture
the whole spectrum of known elimination procedures in effective algebraic ge-
ometry. Because of this limitation of branchings, we shall call the algorithms of
our model branching parsimonious (compare [7] and [4]).

Recall that our two main constructions of elementary routines depend on a
previous selection of generic computations from our shape list. This selection
may be handled by calculations with the indexations of its members. We shall

11

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 252

think that these calculations become realized by deterministic Turing machines.
At the beginning, for a given robust parametric input circuit β with parameter
domain M, a tuple of fixed (i.e. of β independent) length of natural numbers is
determined. This tuple constitutes an initial configuration of a Turing machine
computation which determines the generic computations of our shape list that
intervene in the elementary routine under construction. The entries of this tuple
of natural numbers are called invariants of the circuit β. These invariants, whose
values may also be boolean (i.e. realized by the natural numbers 0 or 1), depend
mainly on algebraic or geometric properties of the final results of β. However,
they may also depend on structural properties of the labelled DAG β.

For example, the invariants of β may express that β has r parameters, n
inputs and outputs, (over C) non–scalar size at most L, that β is totally division–
free and that the final results of β have degree at most d ≤ 2L and form a reduced
regular sequence.

Some of these invariants (e.g. the syntactical ones like number of parameters,
inputs and outputs and non–scalar size and depth) may simply be read–off from
the labelled DAG structure of β. Others, like the truth value of the statement
that the final results of β form a reduced regular sequence, have to be pre-
computed by an elimination algorithm from a previously given software library
in effective commutative algebra or algebraic geometry or its value has to be
fixed in advance (generally to the boolean value one) as a precondition for the
elementary routine which becomes applied to β.

In the same vein we may equip any elementary routine A with a Turing
computable function which from the values of the invariants of a given input
circuit β decides whether β is admissible for A, and, if this is the case, determines
the generic computations of our shape list which intervene in the application of
A to β.

We shall now go a step further letting depend the structure of A itself on
the invariants of β. In the simplest case this means that we admit that the
vector of invariants of β, denoted by inv(β), determines the internal structure
of an elementary routine, say Ainv(β), which admits β as input. Observe that
the internal structure of the elementary routines of our computation model may
be characterized by tuples of fixed length of natural numbers. We consider this
characterization as an indexation of the elementary routines of our computa-
tion model. We may now use this indexation in order to combine dynamically
elementary routines by composition and join. Let us limit the attention to the
case of composition. In this case the output circuit of one elementary routine
is the input for the next routine. The elementary routines which compose this
display become implemented as pipes which start with the final results of the
input circuits of the routine representing the pipe and end with the final results
of the output circuits of the routine. Given such a pipe and an input circuit γ for
the elementary routine B representing the pipe, we may apply suitable identity
tests to the final results of B(γ) in order to determine a boolean vector which we
use to compute the index of the next elementary routine (seen as a new pipe)
which will be applied to B(γ) as input.

12

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 253

Observe that elementary routines are particular algorithms. If the pipes of
an algorithm are all represented by essentially division–free elementary routines,
we call the algorithm itself essentially division–free.

One sees easily that the “Kronecker algorithm” [10] (compare also [9], [6] and
[8]) may be programmed in our extended computation model.

We say that a given algorithm A of our extended model computes (only)
parameters if A satisfies the following condition:

for any admissible input β the final results of A(β) are all parameters.

Suppose that A is such an algorithm and β is the robust parametric arith-
metic circuit with parameter domain M which we have considered before. Ob-
serve that A(β) contains the input variables X1, . . . , Xn and that possibly new
variables, which we call auxiliary, become introduced during the execution of
the algorithm A on input β. Since the algorithm A computes only parameters,
the input and auxiliary variables become finally eliminated by the application of
recursive parameter routines and evaluations. We may therefore collect garbage
reducing A(β) to a final output circuit Afinal(β) which computes only parame-
ters.

If we consider the algorithm A as a partial map which assigns to each ad-
missible input circuit β its final output circuit Afinal(β), we call A a procedure.

In the sequel we shall need a particular variant of the notion of a procedure
which enables us to capture the following situation.

Suppose we have to find a computational solution for a by the language
L formally specified general algorithmic problem and that the formulation of
the problem depends on certain parameter variables, say U1, . . . , Ur, input vari-
ables, say X1, . . . , Xn and output variables, say Y1, . . . , Ys. Let such a problem
formulation be given and suppose that its input is implemented by the robust
parameterized arithmetic circuit β considered before, interpreting the parameter
variables U1, . . . , Ur as the basic parameters π1, . . . , πn.

Then an algorithm A of our extended computation model which solves the
given algorithmic problem should satisfy the architectural requirement we are
going to describe now.

The algorithm A should be the composition of two subalgorithms A(1) and
A(2) of our computation model which satisfy on input β the following conditions:

(i) The subalgorithm A(1) computes only parameters, β is admissible for A(1)

and none of the indeterminates Y1, . . . , Ys is introduced in A(1)(β) as auxil-
iary variable.

(ii) The circuit A(1)
final(β) is an admissible input for the subalgorithm A(2), the

indeterminates Y1, . . . , Ys occur as auxiliary variables in A(2)(A(1)
final(β)) and

the final results of A(2)(A(1)
final(β)) depend only on π1, . . . , πr and Y1, . . . , Ys

(all other auxiliary variables become eliminated during the execution of the

subalgorithm A(2) on the input circuit A(1)
final(β)).

To the circuit A(2)(A(1)
final(β)) we may, as in the case when we compute only

parameters, apply garbage collection. In this manner A(2)(A(1)
final(β)) becomes

13

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 254

reduced to a final output circuit Afinal(β) with parameter domain M which
contains only the inputs Y1, . . . , Ys.

Observe that the subalgorithm A(1) is by Proposition 1 an output isopara-
metric procedure of our extended computation model (the same is also true for
the subalgorithm A(2), but this will not be relevant in the sequel).

We consider the algorithm A, as well as the subalgorithms A(1) and A(2),
as procedures of our extended computation model. In case that the subproce-
dures A(1) and A(2) are essentially division–free, we call also the procedure A
essentially division–free. This will be of importance in Section 3.

The architectural requirement given by conditions (i) and (ii) may be inter-
preted as follows:

the subprocedure A(1) is a pipeline which transmits only parameters
to the subprocedure A(2). In particular, no (true) rational function is
transmitted from A(1) to A(2).

Nevertheless, let us observe that on input β the procedure A establishes
an additional link between β and the subprocedure A(2) applied to the input
A(1)(β). The elementary routines which constitute A(2) on input A(1)(β) be-
come determined by index computations on inv(β) and which depend on certain
output isoparametric identity tests. In this sense the subprocedure A(1) trans-
mits not only parameters to the subprocedure but also a limited amount of
digital information which stems from the input circuit β.

The decomposition of the procedure A into two subprocedures A(1) and A(2)

satisfying conditions (i) and (ii) represents an architectural restriction which
requires a justification which cannot be given here for lack of space. In the case
of elimination algorithms this restriction is necessary, since otherwise a potential
new procedure could not compete with already known ones. In Section 3 we shall
make a substantial use of this restriction.

3 An application of the extended computation model to
complexity issues of effective elimination theory

In this section we shall consider elimination problems of the following simple
type.

Let r, n ∈ N, U1, . . . , Ur, X1, . . . , Xn indeterminates, U := (U1, . . . , Ur), X :=
(X1, . . . , Xn) and let G1, . . . , Gn be polynomials of Q[X] such that the equations
G1 = 0, . . . , Gn = 0 define a non–empty, finite subset V of Cn. Furthermore
let be given an additional polynomial H ∈ Q[U,X] and observe that F :=
Πx∈V (Y − H(U, x)) belongs to Q[U, Y] and describes the image of the map
ϕ : Cr × V → Cr × C1 which assigns to each point (u, x) ∈ Cr × V the value
(u,H(u, x)) ∈ Cr × C1.

We call F the elimination polynomial associated to G1 = 0, . . . , Gn = 0 and
H. The determination of the image of ϕ by means of the computation of F
constitutes a typical problem of effective elimination theory. We wish to make
this more precise.

14

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 255

Let be given as input a robust parameterized arithmetic circuit β with pa-
rameter domain Cr (i.e. with basic parameters U1, . . . , Ur), inputs X1, . . . , Xn

and final results G1, . . . , Gn and H.
The question is: what can be said about the size of the circuit Afinal(β) when

A is an arbitrary division–free procedure in the sense of Section 2.3 which solves
the given elimination problem (this means that the output circuit Afinal(β) has
a single output node which represents the polynomial F)?

Thanks to our computation model this is a precise question to which we are
now able to give a precise (but deceiving) answer.

Theorem 1. Let notations and assumptions be as before. For any natural num-
ber n there exists an essentially division–free, robust parameterized arithmetic
circuit βn with basic parameters T , U1, . . . , Un and inputs X1, . . . , Xn which for

U := (U1, . . . , Un) and X := (X1, . . . , Xn) computes polynomials G
(n)
1 , . . . , G

(n)
n ∈

C[X] and H(n) ∈ C[T,U,X] such that the following conditions are satisfied:

(i) The equations G
(n)
1 = 0, . . . , G

(n)
n = 0 define a non–empty, finite subset Vn of

Cn and constitute together with the polynomial H(n) an elimination problem
as above, which depends on the parameters T , U1, . . . , Un and the inputs
X1, . . . , Xn and has an associated elimination polynomial F (n) ∈ C[T,U, Y].

(ii) βn is an ordinary division–free arithmetic circuit of size O(n) with inputs
T , U1, . . . , Un, X1, . . . , Xn.

(iii) γn := Afinal(βn) is an essentially division–free robust parameterized arith-
metic circuit with basic parameters T,U1, . . . , Un and input Y such that γn
computes F (n). The circuit γn performs at least Ω(2

n
2) essential multiplica-

tions and at least Ω(2n) multiplications with parameters. Therefore γn has,
as ordinary arithmetic circuit over C with inputs T,U1, . . . , Un, X1, . . . , Xn,
non–scalar size at least Ω(2n).

There is no place here to exhibit the family of polynomials G
(n)
1 , . . . , G

(n)
n ,

H(n), n ∈ N.
With other words, the simple elimination problem under consideration re-

quires exponential time to represent its solution. Therefore the pseudopolyno-
mial Kronecker and any other elimination algorithm, which is expressible in our
computation model, cannot be boiled down to polynomial time.

On the other hand, Theorem 1 and its proof allow to conclude that a software
engineer, using only arithmetization techniques [20], will never be able to find a
polynomial algorithm to show P = NP = coNP .

The proof of Theorem 1 makes a substantial use of Theorem 2 in Appendix
A or, in other words, of the notion of a geometrically robust constructible map.
The output isoparametricity and the particular architecture of the procedure A
play a crucial rôle in the argument.

The final outcome of our considerations is the following: neither mathemati-
cians nor software engineers, nor a combination of them will ever produce a
practically satisfactory, generalistic software for elimination tasks in Algebraic
Geometry. This is a job for hackers which may find for particular elimination
problems specific efficient solutions.

15

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 256

A Appendix : Concepts and tools from Algebraic
Geometry

A.1 Basic notations and definitions

A.1.1 Basic notations For any n ∈ N, we consider the n–dimensional affine
space Cn as equipped with its respective Zariski and Euclidean topologies over
C. In algebraic geometry, the Euclidean topology of Cn is also called the strong
topology.

Let X1, . . . , Xn be indeterminates over C and let X := (X1, . . . , Xn). We
denote by C[X] the ring of polynomials in the variables X with complex coeffi-
cients.

Let V be a closed affine subvariety of Cn, that is, the set of common zeros
in Cn of a finite set of polynomials belonging to C[X].

We denote by I(V) := {f ∈ C[X] : f(x) = 0 for any x ∈ V } the ideal
of definition of V in C[X] and by C[V] := {ϕ : V → Ce; there exists f ∈
C[X] with ϕ(x) = f(x) for any x ∈ V } its coordinate ring. Observe that C[V]
is isomorphic to the quotient C–algebra C[V] := C[X]/I(V). If V is irreducible,
then C[V] is zero–divisor free and we denote by C(V) the field formed by the
rational functions of V with maximal domain which is called the rational function
field of V . Observe that C(V) is isomorphic to the fraction field of the integral
domain C[V].

In the general situation where V is an arbitrary closed affine subvariety of
Cn, the notion of a rational function of V has also a precise meaning. The only
point to underline is that the domain, say U , of a rational function of V has to
be a maximal Zariski open and dense subset of V to which the given rational
function can be extended. In particular, U has a nonempty intersection with
any of the irreducible components of V . We denote the C–algebra of rational
functions of V also by C(V). Observe that C(V) is the total fraction ring of
C[V] and contains C[V].

A.1.2 Basic definitions Let be given a partial map φ : V 99K W , where
V and W are closed subvarieties of some affine spaces Cn and Cm, and let
φ1, . . . , φm be the components of φ. With these notations we have the following
definitions which can be found in [5]:

Definition 2 (Polynomial map). The map φ is called a morphism of affine
varieties or just polynomial map if the complex valued functions φ1, . . . , φm be-
long to C[V]. Thus, in particular, φ is a total map.

Definition 3 (Rational map). We call φ a rational map of V to W , if the
domain U of φ is a Zariski open and dense subset of V and φ1, . . . , φm are the
restrictions of suitable rational functions of V to U .

Observe that our definition of a rational map differs from the usual one in
Algebraic Geometry, since we do not require that the domain U of φ is maximal.
Hence, in the case m := 1, our concepts of rational function and rational map
do not coincide.

i

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 257

A.1.3 Constructible sets and constructible maps LetM be a subset of
the affine space Cn and, for a given nonnegative integer m, let φ : M 99K Cm
be a partial map.

Definition 4 (Constructible set). We call the set M constructible if M is
definable by a Boolean combination of polynomial equations.

A basic fact is the following: ifM is constructible, then its Zariski closure is
equal to its Euclidean closure (see, e.g. [18], Chapter I, §10, Corollary 1).

Definition 5 (Constructible map). We call the partial map φ constructible
if the graph of φ is constructible as a subset of the affine space Cn × Cm.

We say that φ is polynomial if φ is the restriction of a morphism of affine
varieties Cn → Cm to a constructible subset M of Cn and hence a total map
from M to Cm. Furthermore we call φ a rational map of M if the domain U
of φ is contained in M and φ is the restriction to M of a rational map of the
Zariski closureM ofM. In this case U is a Zariski open and dense subset ofM.

Since the elementary, i.e. the first order theory of algebraically closed fields
with constants in C, admits quantifier elimination, constructibility means just
elementarily definability. In particular, φ constructible implies that the domain
and the image of φ are constructible subsets of Cn and Cm, respectively.

A useful fact concerning constructible maps we are going to use in the sequel
is the following result (see, e.g. [16], Proposition 3.2.14).

Lemma 3. Let M be a constructible subset of Cn and let φ : M 99K Cm be a
partial map. Then φ is constructible if and only if there exists a partition of its
domain in finitely many constructible subsets, say M1, . . . ,Ms, such that for
any 1 ≤ k ≤ s the restriction of φ to Mk is a rational map of Mk which is
defined at any point of Mk.

In particular, if φ :M→ Cm is a total constructible map, then there exists
a Zariski open and dense subset U of M such that the restriction φ|U of φ to U
is a rational map.

We denote by C(V) the C–algebra formed by the rational functions of V . In
algebraic terms, C(V) is the total quotient ring of C[V] and is isomorphic to the
direct product of the rational function fields of the irreducible components of V .

A.2 Weakly continuous, strongly continuous and hereditary maps

We are now going to introduce the notions of a weakly continuous, a strongly
continuous and a hereditary map of the constructible setM. These three notions
will constitute our fundamental tool for the modeling of elimination problems
and algorithms.

Definition 6 (Conditions and notions). Let M be a constructible subset
of Cn and let φ : M → Cm be a (total) constructible map. We consider the
following four conditions:

ii

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 258

(i) there exists a Zariski open and dense subset U ofM such that the restriction
φ|U of φ to U is a rational map of M and the graph of φ is contained in the
Zariski closure of the graph of φ|U in M× Am;

(ii) φ is continuous with respect to the Euclidean, i.e. strong, topologies of M
and Am;

(iii) for any constructible subset N of M the restriction φ|N : N → Am is an
extension of a rational map of N and the graph of φ|N is contained in the
Zariski closure of this rational map in N × Am.

We call the map φ

– weakly continuous if φ satisfies condition (i),
– strongly continuous if φ satisfies condition (ii),
– hereditary if φ satisfies condition (iv).

In all these cases we shall refer to M as the domain of definition of φ or we
shall say that φ is defined on M.

A.2.1 The notion of geometrical robustness The main mathematical tool
of this paper is the notion of geometrical robustness we are going to introduce
now.

Let M be a constructible subset of the affine space Cn.
We consider now the Zariski closureM ofM in Cn. SinceM is constructible,

the strong and Zariski closures ofM in Cn coincide. Observe thatM is a closed
affine subvariety of Cn and that we may interpret C(M) as a C[M]–module (or
C[M]–algebra).

Fix now an arbitrary point x of M.
By Mx we denote the maximal ideal of coordinate functions of C[M] which

vanish at the point x.
By C[M]Mx

we denote the local C–algebra of the variety M at the point x,
i.e. the localization of C[M] at the maximal ideal Mx.

By C(M)Mx we denote the localization of the C[M]–module C(M) at Mx.
Let φ :M→ Cm be a constructible map. Then by Lemma 3 we may interpret

φ1, . . . , φm as rational functions of the affine varietyM and therefore as elements
of the total fraction ring C(M) of C[M].

Thus C[M][φ1, . . . , φm] and C[M]Mx
[φ1, . . . , φm] are C–subalgebras of C(M)

and C(M)Mx
which contain C[M] and C[M]Mx

, respectively.
With these notations we are able to formulate the following concept of a

geometrically robust constructible map.

Definition 7. Let M be a constructible subset of a suitable affine space and let
φ :M→ Cm be a (total) constructible map with components φ1, . . . , φm. Based
on Lemma 3 we may interpret φ1, . . . , φm as rational maps of M. We call φ
geometrically robust if for any point x ∈ M the following two conditions are
satisfied:

(i) C[M]Mx
[φ1, . . . , φm] is a finite C[M]Mx

–module.

iii

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 259

(ii) C[M]Mx
[φ1, . . . , φm] is a local C[M]Mx

–algebra whose maximal ideal is gen-
erated by Mx and φ1 − φ1(x), . . . , φm − φm(x).

Observe that the notion of a geometrically robust map makes also sense when
C is replaced by an arbitrary algebraically closed field (of any characteristic). In
this sense we have the following fundamental result.

Proposition 2. Geometrically robust constructible maps are weakly continuous,
topologically robust and hereditary. Moreover the composition of two geometri-
cally robust constructible maps is geometrically robust.

In this paper we consider only the algebraically closed field C. In this par-
ticular case we have the following characterization of geometrically robust con-
structible maps.

Theorem 2. Let assumptions and notations be as before. Then the constructible
map φ :M→ Am is geometrically robust if and only if φ is strongly continuous.

Theorem 2 is new. It gives a topological motivation for the rather abstract,
algebraic notion of geometrical robustness. The reader not acquainted with com-
mutative algebra may just identify the concept of geometrical robustness with
that of strong continuity for constructible maps.

Observe that for the algebraically closed field C Proposition 2 follows imme-
diately from Theorem 2.

The proof of Theorem 2 makes a non–trivial use of deep tools from Algebraic
Geometry like Zariski’s Main Theorem [16]. For details we refer to [4] and [5].

The origin of the concept of a geometrically robust map can be found, im-
plicitly, in [7] in a similar context as in Section 3 of this paper. Therefore this
concept is well motivated from the point of view of Computer Science since it
stems from this discipline.

B Appendix : Generic computations

For the notion of “ordinary” arithmetic circuits (or straight–line programs) we
refer to [3].

In Section 2 we referred to ordinary arithmetic circuits over C, whose indegree
zero nodes are labelled by scalars and parameter and input variables, as generic
computations [3] (also called computation schemes in [11]).

The aim of this concept is to represent different parameterized arithmetic
circuits of similar size and appearance by different specializations (i.e. instantia-
tions) of the parameter variables in one and the same generic computation. For
a suitable specialization of the parameter variables, the original parameterized
arithmetic circuit may then be recovered by an appropriate reduction process
applied to the specialized generic computation.

This alternative view of parameterized arithmetic circuits is fundamental for
the design of routines of the computation model we describe in Section 2 of this

iv

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 260

paper. The routines of our computation model operate on robust parameterized
arithmetic circuits and their basic ingredients are subroutines which calculate
parameter instances of suitable, by the model previously fixed, generic compu-
tations. These generic computations become organized in finitely many families,
called “shapes”, which only depend on a constant number of discrete parameters.
These discrete families constitute the basic building block of our computation
model.

We shall now exemplify these abstract considerations in the concrete situation
of the given parameterized arithmetic circuit β of Section 2.1. Mutatis mutandis
we shall follow the exposition of [14], Section 2. Let l, L0, . . . , Ll+1 with L0 ≥
r+ n+ 1 and Ll+1 ≥ q be given natural numbers. Without loss of generality we
may suppose that the non–scalar depth of β is positive and at most l, and that
β has an oblivious leveled structure of l+ 2 levels of width at most L0, . . . , Ll+1.
Let U1, . . . , Ur be new indeterminates (they will play the role of a set of “special”
parameter variables which will only be instantiated by π1, . . . , πr).

We shall need the following indexed families of “scalar” parameter variables
(which will only be instantiated by complex numbers).

- for n+ r < j ≤ L0 the indeterminate Vj

- for 1 ≤ i ≤ l, 1 ≤ j ≤ Li, 0 ≤ h ≤ i, 1 ≤ k ≤ Lh, the indeterminates A
(h,k)
i,j ,

B
(h,k)
i,j and Si,j , Ti,j

- for 1 ≤ j ≤ Ll+1, 1 ≤ k ≤ Ll the indeterminate Ckj .

We consider now the following function Q which assigns to every pair (i, j),
1 ≤ i ≤ l, 1 ≤ j ≤ Li and (l+1, j), 1 ≤ j ≤ Ll+1 the rational expressions defined
below:

Q0,1 := U1, . . . , Q0,r := Ur,

Q0,r+1 := X1, . . . , Q0,r+n := Xn,

Q0,r+n+1 := Vr+n+1, . . . , Q0,L0
:= VL0

For 1 ≤ i ≤ l and 1 ≤ j ≤ Li the value Qi,j of the function Q is recursively
defined by

Qi,j := Si,j(
∑

0≤h<i

1≤k≤Lh

A
(h,k)
i,j Qh,ke.

∑
0≤k′<i

1≤k′≤Lh′

B
(h′,k′)
i,j Qh′,k′)e+

Qi,j =Ti,j(
∑

0≤h<i

1≤k≤Lh

A
(h,k)
i,j Qh,ke/

∑
0≤h′<i

1≤k′≤Lh′

B
(h′,k′)
i,j Qh′,k′)

Finally, for (l + 1, j), 1 ≤ j ≤ Ll+1 we define Q(l+1,j) :=
∑

1≤k≤Ll
CkjQl,k e

We interpret the function Q as a (consistent) ordinary arithmetic circuit, say
Γ , over Z (and hence over C) whose indegree zero nodes are labelled by the “stan-
dard” input variables X1, . . . , Xn, the special parameter variables U1, . . . , Ur and
the scalar parameter variables just introduced.

v

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 261

We consider first the result of instantiating the scalar parameter variables
contained in Γ by complex numbers. We call such an instantiation a specializa-
tion of Γ . It is determined by a point in a suitable affine space. Not all possible
specializations are consistent, giving rise to an assignment of a rational function
of C(U1, . . . , Ur, X1, . . . , Xn) to each node of Γ as intermediate result.

We call specializations where this assignment fails inconsistent. If in the con-
text of a given specialization of the scalar parameter variables of Γ we instantiate
for each index pair (i, j), 1 ≤ i ≤ l, 1 ≤ j ≤ Li the variables Si,j and Ti,j by two
different values from {0, 1}, the labelled directed acyclic graph Γ becomes an
ordinary arithmetic circuit over C of non–scalar depth at most l and non–scalar
size at most L1 + · · ·+ Ll with the inputs U1, . . . , Ur, X1, . . . , Xn.

We may now find a suitable specialization of the circuit Γ into a new circuit
Γ ′ over C such that the following condition is satisfied:

the (by M) parameterized circuit obtained from Γ ′ by replacing the
special parameter variables U1, . . . , Ur by π1, . . . , πr, is consistent and
can be reduced to the circuit β.

We may now consider the circuit Γ as a generic computation which allows
to recover β by means of a suitable specialization of its scalar and special pa-
rameter variables into complex numbers and basic parameters π1, . . . , πr and
by means of circuit reductions. Moreover, any by M parameterized, consistent
arithmetic circuit of non–scalar depth at most l, with inputs X1, . . . , Xn and q
outputs, which has an oblivious level structure with l+ 2 levels of width at most
L0, . . . , Ll+1, may be recovered from Γ by suitable specializations and reductions
(see [3], Chapter 9 for more details on generic computations).

vi

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 262

References

1. Apt, K.R.: Ten years of Hoare’s logic: A survey–part I. ACM Transactions on
Programming Languages and Systems (TOPLAS) 3(4), 431–483 (Oct 1981)

2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer–Verlag (1998)

3. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.
Grundlehren der mathematischen Wissenschaften, vol. 315. Springer Verlag (1997)

4. Castro, D., Giusti, M., Heintz, J., Matera, G., Pardo, L.M.: The hardness of polyno-
mial equation solving. Foundations of Computational Mathematics 3(4), 347–420
(2003)

5. Giménez, N., Heintz, J., Matera, G., Solernó, P.: Lower complexity bounds for
interpolation algorithms. Journal of Complexity 27, 151–187 (2011)

6. Giusti, M., Hägele, K., Heintz, J., Montaña, J.L., Morais, J.E., Pardo, L.M.: Lower
bounds for diophantine approximation. Journal of Pure and Applied Algebra 117,
277–317 (1997)

7. Giusti, M., Heintz, J.: Kronecker’s smart, little black boxes. In: Foundations of
Computational Mathematics, R. A. DeVore, A. Iserles, E. Süli eds., London Math-
ematical Society Lecture Note Series, vol. 284, pp. 69–104. Cambridge University
Press, Cambridge (2001)

8. Giusti, M., Heintz, J., Morais, J.E., Pardo, L.M.: Le rôle des structures de données
dans les problemes d’élimination. Comptes Rendus Acad. Sci. Serie 1(325), 1223–
1228 (1997)

9. Giusti, M., Heintz, J., Morais, J., Morgenstern, J., Pardo, L.: Straight-line pro-
grams in geometric elimination theory. Journal of Pure and Applied Algebra 124,
101–146 (1998)

10. Giusti, M., Lecerf, G., Salvy, B.: A Gröbner Free Alternative for Polynomial Sys-
tem Solving. Journal of Complexity 17, 154–211 (2001)

11. Heintz, J.: On the computational complexity of polynomials and bilinear mappings.
A survey. Proceedings 5th International Symposium on Applied Algebra, Algebraic
Algorithms and Error Correcting Codes Springer LNCS 356, 269–300 (1989)

12. Heintz, J., Sieveking, M.: Absolute primality of polynomials is decidable in random
polynomial time in the number of variables. Automata, languages and program-
ming (Akko, 1981). Lecture Notes in Computer Science 115, 16–28 (1981)

13. Kaltofen, E.: Greatest common divisors of polynomials given by straight–line pro-
grams. J. Assoc. Comput. Mach. 35(1), 231–264 (1988)

14. Krick, T., Pardo, L.M.: A computational method for diophantine approximation.
Algorithms in Algebraic Geometry and Applications. Proceedings of MEGA’94.
Progress in Mathematics 143, 193–254 (1996)

15. Lecerf, G.: Kronecker: a Magma package for polynomial system solving. Web page.
http://lecerf.perso.math.cnrs.fr/software/kronecker/index.html

16. Marker, O.: Model theory: An introduction, vol. 217. Springer, New York (2002)
17. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall, 2. edn. (2000)
18. Mumford, D.: The red book of varieties and schemes, vol. 1358. Springer, Berlin

Heidelberg, New York, 1. edn. (1988)
19. Shafarevich, I.R.: Basic algebraic geometry: Varieties in projective space. Springer,

Berlin Heidelberg, New York (1994)
20. Shamir, A.: IP=PSPACE. J. ACM 39, 869–877 (1992)

vii

40JAIIO - EST 2011 - ISSN: 1850-2946 - Página 263

http://lecerf.perso.math.cnrs.fr/software/kronecker/index.html
http://lecerf.perso.math.cnrs.fr/software/kronecker/index.html
http://lecerf.perso.math.cnrs.fr/software/kronecker/index.html
http://lecerf.perso.math.cnrs.fr/software/kronecker/index.html

