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Abstract. A novel approach for the extrinsic calibration of a camera-
robot system, i.e. the estimation of the pose of the camera with respect
to the robot coordinate system, is presented. The method is based on the
relative pose of a planar pattern as seen by the camera, estimated along a
predefined set of simple robot motions. This set has been generated so as
to exploit the kinematic constraints imposed by the robot architecture
and the relative pose between the pattern and the camera coordinate
system. The resulting calibration procedure is very simple, making it
suitable to be used in a broad range of applications. Experimental eval-
uations on both synthetic and real data demonstrate the validity of the
proposed method.

1 Introduction

In the field of mobile robotics, and especially on those applications involving
some degree of autonomy or interaction, cameras have become one of the most
used sensors. In order to relate the observed 3D world to its image representa-
tion, different parametric models governing the geometry of the image formation
process have been proposed, with the projective (pinhole) camera model being
the de-facto standard. Among all the parameters of a projective model are those
known as extrinsic: the set of parameters defining the camera pose with respect
to a given reference system in 3D space. Unlike other sensor types, where the
reference system can be regarded as being located on a known point inside the
physical device, the reference system for a camera depends both on the geometry
of the sensor as well on the lens array being used.

Standard camera calibration schemes [15] refer the camera system to an
arbitrary pose given by a planar pattern taken from a particular view among
the image set used for calibration. The common approach to refer the camera
to the robot coordinate system is therefore “measuring by hand”. This is not
well suited for mobile robots aiming to perform autonomous tasks in complex
scenarios, where the control strategy of the robot critically depends on the visual
information or where different sensors are used cooperatively.

A possible solution to the problem was presented in [11], where the extrinsic
calibration of the camera is performed by looking at known points on the robot’s
body with the help of a mirror. Their approach makes use of the mechanical
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model (CAD) of the robot and does not take into account its possible inaccuracies
or deviations (mechanical wear, loss of calibration, etc.). Thus, the proposed
solution estimate the pose parameters with respect to a system that can be
different from the one determining the robot’s kinematics. In [12], a method
based on the Extended Kalman Filter (EFK) is proposed. The method integrates
the robot’s odometry and the angle between a light source and the camera
principal axis, which is assumed to be parallel to the navigation plane of the
robot thus making the method not well suited for practical problems.

In this paper, a simple yet powerful method for the estimation of the camera
pose w.r.t. the actual robot reference system is given. The method makes no
assumptions about the robot’s mechanical layout and allows to relate the camera
coordinate system to that of greatest importance for autonomous navigation: the
robot’s reference frame. The method uses a fiducial marker, similar to those used
in augmented reality applications [7], to track the relative pose of the camera
along a small set of motions. The resulting trajectories, as seen by the camera,
are then used to infer its relative position and orientation with respect to the
system that constrained them. As the method doesn’t uses the robot’s odometry,
it is not faced with problems arising from error integration along trajectories.

The paper is organized as follows: In Section 2, a brief overview of the fiducial
detection and pose estimation system used in the experiments is given. The
description is not intended to be complete but to show the main characteristics
of the system over which the calibration method is built. In Section 3, the model
for a camera mounted statically on a non-holonomic mobile robot is presented.
Sections 4.1 and 4.2 formalizes the calibration method for both the translation
vector and rotation matrix that uniquely define the pose of the camera w.r.t. the
robot reference system. Experimental results on both simulated and real data
are presented in Section 5. Finally, conclusions are drawn in Section 6.

2 Fiducial detection and pose estimation

The fiducial detection and pose estimation system consists of a planar pattern
with a chessboard-like structure, where the L shaped pattern of interior points
(X-shaped corners) limits the number of possible solutions determining its pose,
as shown in Fig. 1.

The detection process consists of the following steps:

1. Adaptive image binarization by means of locally defined thresholds, as in
[6]. This processing step requires the generation of an “integral image” rep-
resentation of the input image, where each pixel on the former has a value
equal to the sum of those lying within the block defined by the current pixel
location and the image top-left corner of the last. This representation is kept
in memory for further usage.

2. Quadrilateral detection by means of simple heuristics (straight segment de-
tection and filtering) on the contours extracted from the binary image ob-
tained during the previous step.
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Fig. 1. Example of the fiducial detection system, showing a) the binarized image, b)
the detected quadrilateral pattern and c) the control points extracted superimposed
on the original image, together with the estimated pose.

3. Control point extraction by detection of local maxima of the function

Hσ(x, y) = max{0, (Ixy(x, y))
2 − Ixx(x, y)Iyy(x, y)} (1)

with Ixx, Ixy and Iyy the second spatial derivatives of the input image I(x, y)
computed at scale σ. Note that (1) is just the negative of the Hessian matrix,
giving a high score to regions having saddle-point like structures (X-shaped
corners).

The use of saddle-points instead of more usual corner points [10], was moti-
vated by the displacement effect that is observed on the last one when the image
defocusing increases [3, 13]. This is particularly important when using lenses with
relatively shorts depth-of-fields.

In order to speed-up the detection process, derivatives in (1) are computed
using a block approximation as in [4] by means of the integral image generated
during the binarization step.

Once the fiducial marker has been detected and its control-points matched
against the model, the 3D pose of the pattern is estimated. Here, a closed form
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Fig. 2. Schematic diagram of the Robot-Camera model.

solution has been obtained [8] and used as initial guess for a non-linear opti-
mization.

Fig. 1 shows an example of each of the previously described steps.

3 Robot-Camera model

Let’s consider a projective camera with known intrinsic parameters [15], mounted
on a non-holonomic unicycle mobile robot as shown schematically in Fig. 2. Using
homogeneous coordinates, a point x ∈ R

2 on the image plane can be modelled
as the projection of a 3D point X ∈ R

3 by means of the following transformation

x̃ = PcrX̃ = (Rcr|tcr) X̃ (2)

where x̃ = (xT , 1)T , X̃ = (XT , 1)T and with Rcr ∈ SO(3) and tcr ∈ R
3 the

rotation matrix and translation vectors respectively that determine the 3D pose
of the camera coordinate system (CCS) with respect to the robot coordinate-
system (RCS). Note that the intrinsic calibration matrix has been factored out
in (2), since it does not modifies the present analysis1.

As it is usual in the literature, the RCS is considered to be located on the
midpoint of the wheel’s axle and oriented in such that its Yr-axis and {XY}r-
plane are parallel to the wheel’s rotation axis and the ground plane respectively.
The wheel’s diameter dw and the inter-wheel distance b (wheelbase) are assumed
to be known. This implies that the robot’s odometry is fully calibrated, e.g. by
the methods proposed in [5] or [1].

1 This can always be done by pre-multiplying the homogeneous image-coordinates by
the inverse of the (non-singular) calibration matrix.
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Fig. 3. Calibration of the translation vector, tcr. The dashed lines show the trajectories
of the camera.

4 Robot-Camera Extrinsic Calibration

4.1 Calibration of the translation vector, tcr

For the case of a non-holonomic unicycle robot, the translation vector tcr =
(Xcr,Ycr,Zcr)

T
that relates the CCS to the RCS can be estimated by exploiting

the constraints imposed by the robot architecture as follows. Let the robot per-
form a pair of circular motions around each of its wheels while estimating the
pose of a fiducial marker located in 3D space, as shown schematically in Fig. 3.

If we denote the inter-wheel distance as b, the Xcr and Ycr coordinates of the
translation vector are solutions of the system

{

x2 +
(

y + b
2

)2

= R2

1

x2 +
(

y − b
2

)2

= R2

2

(3)

which are easily shown to be

Xcr = ±

√

R2

1
−

(

Ycr +
b

2

)2

(4)

Ycr =
R2

1
−R2

2

2b
(5)

and with the sign of (4) according to which side of the wheel’s axis the camera
is located on.

It can be seen from the above expressions that the first two components of
the translation vector tcr can be estimated once the radii R1 and R2 are known.
A simple procedure to estimate those radii arises after observing that, in the
FCS (Fiducial Coordinate System), the 3D points describing the position of the
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camera along each circular motion lie all on the same spatial plane and describe
on it a set of circle-arcs whose radii are those needed to solve (4)–(5).

Let {pi, i = 1 · · ·Np} be the set of 3D points determining the position (trans-
lation vector) of the camera in the FCS estimated along each of the described
motions2 and let p0 be its centroid. It can be shown that the Best-Fit plane
[2], i.e. the plane that minimizes the sum of orthogonal distances from observed
points to it, corresponds to that of parameters given by the vector p0 and the
eigenvector corresponding to the smallest eigenvalue of M, the covariance matrix
of the point set

M =

N
∑

i=1

(pi − p0) (pi − p0)
T

(6)

Let n = (nx, ny, nz)
T
, ‖n‖ = 1, be the normal vector describing the orientation

of this plane. The rotation matrix that brings the Zf -axis of the FCS parallel to
n can be computed by means of the Rodrigues formula3 as

Rf = I+ sin θp[n⊥]× + (1− cos θp)
(

n⊥n
T
⊥ − I

)

(7)

where I denotes the 3× 3 identity matrix, Zf is the unit vector representing the
Zf -axis, θp = cos−1 (n · Zf ) and n⊥ = Zf ×n a vector orthogonal to the normal
n and the Zf -axis.

The matrix Rf can thus be used to rotate the 3D points (forcing all points
to have approximately the same z coordinate in the FCS), after which radii R1

and R2 can be estimated, e.g. by some of the methods described in [9], from the
set of transformed points.

Once the estimation of Xcr and Ycr has been performed, a complete calibra-
tion of the translation vector tcr can be obtained by computing the pose of the
camera relative to a fiducial marker lying on the floor, in which case

Zcr = |tz| −
dw

2
(8)

with dw the diameter of the wheels and tz the z component of the translation
vector estimated in this way.

4.2 Calibration of the rotation matrix, Rcr

To find out the rotation matrix Rcr that aligns the CCS and the RCS the follow
observation based on the non-holonomic nature of the robot must be done. First,
all the observed 3D points determining the fiducial marker position during any
robot motion must lie in a plane parallel to the XYr-plane of the RCS, thus
normal vector n describing the orientation of this plane (found in the previous
section from eq. 6) is parallel to Zr-axis. Second, the direction of the robot

2 Note that this set of points corresponds to the union of the sets obtained indepen-
dently along each circular motion.

3 The notation [v]
×

refers to the cross-product matrix for the vector v.
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moving in a linear motion is parallel to the Xr-axis. This direction vector can be
estimated by means of the following simple procedure, shown schematically in
Fig. 4: let the robot make a back/forward motion (zero angular velocity) while
observing the fiducial marker. Relative to the fiducial, the camera reference point
will describe a line in 3D space with a direction-vector parallel to the Xr-axis of
the RCS.

X�
Y�

Z�

Xc

Yc

Zc

Xr

Yr

Zr

Fig. 4. Calibration of the rotation matrix, Rcr.

Let {p̃i, i = 1 · · ·Np̃} be the set of 3D points determining the position (trans-
lation vector) of the fiducial marker along the linear motion. It can be shown that
the direction of the Best-Fit line (in an orthogonal distance sense) is given by
the eigenvector corresponding to the largest eigenvalue of the covariance matrix
of the point set.

With these two axis directions known, the rotation matrix Rcr can be con-
structed as

Rcr = [q (n× q) n] (9)

where q = (qx, qy, qz)
T
, ‖q‖ = 1, represents the direction vector of the line, n is

the normal vector to the best fitting plane mentioned before, and (n× q) is the
cross product between both.

5 Results

We have applied the proposed method to both simulated and real data.

5.1 Simulated data

In order to evaluate the accuracy of the proposed camera robot calibration
method a relative error measure is defined, wich reflects the error between the
estimated and current values of radii R1 and R2 that appears in (4) and (5). It
is defined as

errξ =
|Rξ − R̂ξ|

|Rξ|
(10)
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with Rξ (R̂ξ) denoting the ξ component of the actual (estimated) radius of each
circle. It is noted that the z component is estimated independently from the pose
of a fiducial marker located at a known distance of the ground, so this error is
concerning to the x and y components of the camera position.

All simulations where carried out with the CCS located at tcr =
(

bw
2
, 0, 0

)T

and Rcr = diag(1, 1, 1). In order to simulate the pose estimation error (of the
camera w.r.t. the fiducial), Gaussian noise of zero mean and a given standard
deviation was added. Figure 5 illustrate the mean and standard deviation from
the mean for the considered error measures as a function of the noise level,
estimated over 100 runs. As it can be seen, the relative error grows quikly up
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Fig. 5. Relative error of estimated radio vs. noise level

with 60 degrees arc, and becomes more stable over 100 degrees arc. This was to
be expected, as in the last case the estimation of the plane normal and circle-arc
radii are better conditioned. It is underlined that the radii estimation should be
performed in a non-linear fashion in order to avoid the curvature bias of linear
least-square methods [14].

It is also noted that as the noise level increases so does the estimation error.
In a real scenario, the estimation error is related to the distance from which
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the fiducial marker is observed. This implies that the fiducial marker should be
located as close as possible to the robot. In our case the noise level in |tcf | of the
estimated pose is less than 1%, that is represented in Figure 5 by sigma = 1,
which means that to keep the relative error under 1% in the estimation of radii,
arcs of 80 degrees must be performed.

Fig. 6. Mobile robot.

5.2 Real data

The robot-camera system used in our experiments is shown on Figure 6. It consist
of a non-holonomic robot platform of parameters dw = 138mm and bw = 455mm

and a camera located along the Xr-axis of the robot at an approximate distance
of 70mm from the wheels axle in this direction, 20mm along the Yr-axis and
270mm along the Zr-axis. The camera is oriented in a down-looking manner with
a tilt angle of 30 degrees approximately. This angle was measured by setting a
pan-and-tilt unit over which the camera was mounted. However, in this way
we can only ensure that the chasis of the camera has the so-determined pose,
but not necesarily the sensor itself. The intrinsic parameters of the camera were
estimated off-line.

The robot describes linear and circular motions around each of its wheels and
the pose of the fiducial pattern are estimated and saved for off-line processing.
For the reference pose (ground plane) we choose one from the set generated
during the linear motion. Table 1 shows the mean (in 15 runs) of the estimated
parameters, indicating the standard deviation between parentheses. It can be
seen that the estimation of Ycr is the most difficult one. We observed that the
accuracy of this value is mostly dependent on the accuracy of the estimated
fiducial pose. One way to stabilize this value could be by means of Kalman
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filtering. Nevertheless, the estimated values are really close those (carefully)
measured by hand.

Table 1. Calibration results.

parameter estimated measured
mean (std. dev.) by hand

Xcr 72.6 (1.86) 70
Ycr 16.5 (8.6) 20
Zcr 277.9 (0.7) 270

tilt angle 29.09 (0.04) 30

6 Conclusions

A new method for the calibration of the pose of a camera mounted on a non-
holonomic mobile robot was proposed. By tracking the relative pose of a planar
marker along a small set of motions, the parameters determining the position
and orientation of the camera where estimated. Although the intrinsic calibration
can be easily incorporated during the procedure, the method still relies on the
robot design parameters, which have to be calibrated. The calibration of the
complete system constitute a perspective of future research.
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