
Flexible Prototyping for Ad Hoc Wireless

Sensor Network Protocols

Juan P. Leal Licudis1, Juan C. Abdala1, Guillermo G. Riva2, and Jorge M.
Finochietto1,3

1 Universidad Nacional de Córdoba, Córdoba
2 Universidad Tecnológica Nacional, Córdoba

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Córdoba
leal.licudis@gmail.com,jcabdala@ieee.org,griva@scdt.frc.utn.edu.ar,

jfinochietto@efn.uncor.edu

Abstract. The development of sofisticated energy-efficient protocols and
the increasing complexity of applications in wireless sensor networks
(WSNs) imposes the use of open and flexible programming architec-
tures that enable access to the communication stack in a simple way.
Nowadays, researchers in WSNs focus on not only the development of
efficient mechanisms in application level but also the interaction with the
communication stack, in order to improve the performance. Because ra-
dio communication is the most energy consuming component of a sensor
node, the main challenge in WSNs is to reduce the communication cost
by means of efficient in-network distributed processing.
In this work, a probabilistic query routing mechanism is designed and
implemented in a WSN, and a study of different operating systems (OS)
and communication stacks available for WSNs is analyzed. This imple-
mentation enables a flexible prototyping of novel mechanisms by using
light communication protocols over a versatile operating system.

Keywords: Wireless Sensor Networks, Embedded Operating System,
Communication Stack, In-network Processing, Probabilistic Routing

1 Introduction

A WSN consists of autonomous battery-powered sensor nodes which can sense
physical parameters of the environment (e.g. temperature, humidity, light inten-
sity, movement, audio, etc) and send this information to a sink or coordinator
node through multi-hop wireless communication. Sensor nodes are deployed over
an area where a specific parameter must be monitored. Applications of WSNs
range from structure monitoring (buildings, bridges, etc), animal monitoring, pa-
tient and athlete monitoring, home automation, logistic, etc. Sensor nodes have
limited computation, storage and communication capabilities. The energy cost
of transmitting 1 bit is approximately equivalent to compute 2000 code instruc-
tions. Since communication cost is much higher than computation one in terms
of energy, it is preferred to implement in-networks processing tasks to reduce

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 249



2 Juan Leal Licudis, Juan Abdala, Guillermo Riva, and Jorge Finochietto

the message exchange [1]. The constrained resources of sensor nodes imposes
computationally simple and efficient tasks.

Actually, a lot of works in WSNs are based on the design of efficient mech-
anisms, algorithms and protocols validated by simulation (e.g. by using Om-
net++, NS2, etc), only a few works consider the development of proofs-of-
concept to show the real network behaviour. Therefore, many implementations
in WSNs consider the use of parameters of lower layers in order to improve
the network functionality (such as cross-layer optimization). In this context, our
work considers the case of using open communication stacks to enable the opti-
mization of different applications and protocols. Two kind of situations can be
considered to requiere an open and flexible communication stack. The first one
is the need to use low layer parameters in order to optimize the performance of
the application. Example of this is the case of adjusting the radio power level, or
changing the routing protocol from broadcast to unicast on demand. The second
one consider the case of testing new data-centric communications protocols.

Therefore, actual trends in WSNs impose the use of heterogenous networks, in
which different kinds of technologies can be interconnected. For this reason, the
development of applications based on dedicated firmware given by WSN suppliers
is appropriate. Because of this, embedded operating system with multiplatform
support is the best option.

The rest of the paper is organized as follows. Section II discusses related
work on embedded operating systems for sensor networks. The description of
the operating system and communication stack used in this work is given in
Section III. Section IV describes a case study where a probabilistic query routing
is designed and implemented. Finally, Section VI discusses main conclusions and
future work.

2 Related work

Nowadays, both free and comercial embedded operating systems are available,
many of which are suitable for energy-constrained WSNs. Examples of open OSs
are Contiki OS [2], MantisOS [3], TinyOS [4], etc.

We can classify OSs based on its architecture, execution model, etc. The ar-
chitecture can be classified in monolithic (e.g. TinyOS), where all source code
is compiled into one logically undivided block of object code, and in modular
(e.g. MantisOS and Contiki OS). Respect to the execution model, three differ-
ent types are currently considered, event driven (ie. TinyOS), multithread driven
(e.g. MantisOS), and hybrid (e.g. Contiki OS). In the first one, every action is
triggered by event (ie. a timer interrupt, an interrupt indicating incoming packets
or new sensor reading). In the second one, OS multiplexes execution time be-
tween different tasks implemented as threads. While switching between threads,
the current context has to be saved and the new context must be restored. In
the third one, advantages of event-based and thread-based OSs are considered.

TinyOS is a free and open source component-based operating system devel-
oped since 2000. TinyOS started as a collaboration between the University of

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 250



Flexible Prototyping for Ad Hoc Wireless Sensor Network Protocols 3

California, Berkeley in co-operation with Intel Research and Crossbow Technol-
ogy, and has since grown to be an international consortium, the TinyOS Alliance.
Even if both good technical support and multiplatform support are provided,
the main disadvantage of using this OS is that core and applications are written
in nesC programming language [5], which is a dialect of C language optimized
for memory-limited devices, as a set of cooperating tasks and processes. NesC
programming imposes difficulties in understanding how parameterized interfaces
can be used, and how to manage their keyspaces. Therefore, the incorporation
of tasks into the nesC language is very difficult, and its learning curve is slow
for a normal developer.

MantisOS is a thread-driven operating system model for sensor networks.
MantisOS suffers from the overheads of context switching and the memory al-
located (in the form of stack) per each thread. This overhead is signifficant in
resource constrained systems like WSNs.

Contiki OS is a small, free and open source, highly portable, hybrid oper-
ating system developed for use on a number of memory-constrained networked
systems. Its execution model takes the advantage of event-based and thread-
based OSs [6]. Contiki include two communication stacks Rime and uIP. The
first one is a lightweight, layered communication stack which is designed to sig-
nificantly reduce the implementation complexity and simplify the development
of communication protocols. The second one enables TCP/UDP transport pro-
tocols, and IPv4/IPv6 Intenet protocols. Applications can use either or both
stacks, and uIP can run over Rime and viceversa. One of the most atractive
characteristic of Contiki is the multiplatform support (such as RZRAVEN, Zig-
Bit, TmoteSky, MicaZ, Sensinode, etc). Therefore, a big community of Contiki’s
developers works in the improvement of Contiki and in the migration to new
platforms.

Most of the OS for WSNs have support for the IEEE 802.15.4 standard [7],
which defines Wireless Medium Access Control (MAC) and Physical Layer (PHY)
specifications for Low Rate Wireless Personal Area Networks (LR-WPANs). It
targets ultra-low complexity, cost, and power for low-data-rate wireless connec-
tivity among fixed, and mobile devices. Actually, 802.15.4 is considered the most
appropriate standard for a WSN.

ZigBee is a specification for a suite of high level communication protocols
based on IEEE 802.15.4. It adds a complete networking solution defining up-
per layers increasing the complexity. Even if the ZigBee specification is freely
available for non-comercial purposes, it is commercially licensed.

We propose the implementation of a novel probabilistic query routing mech-
anism using Contiki OS with Rime communication stack. Although the Rime
stack implements sensor network protocols ranging from reliable data collec-
tion and best-effort network flooding to multi-hop bulk data transfer and data
dissemination, our proposal is builded over the lower layers of Rime. The lay-
ered model of Rime communication stack enables flexibility and efficient use of
resources.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 251



4 Juan Leal Licudis, Juan Abdala, Guillermo Riva, and Jorge Finochietto

3 Contiki Operating System

Contiki consists of an event-driven kernel, on top of which application programs
can be dynamically loaded and unloaded at run time. A typical Contiki config-
uration consumes 2 kilobytes of RAM and 40 kilobytes of ROM. In this OS, the
processes use lightweight protothreads that provide a linear, threadlike program-
ming style on top of the event-driven kernel. Contiki also supports per-process
optional multithreading and interprocess communication using message passing.
Two communication stacks are provided in Contiki, a full IP-networking stack
named uIP [8], and a low-power layered communication stack named Rime [9].
The first one is designed to support both IPv4 and IPv6 (using 6LowPan ab-
straction layer [14]) standards. A comparison between the main characteristics
of both stacks is detailed in Table 1.

Table 1. Comparison of Contiki’s communication stack

X
X

X
X

X
X

X
X

X
Characteristic

Stack
Rime uIP

Complexity low high
Code Size low high
Energy Consumption low high
Funcionality high high
Documentation less more

Contiki also implements an adaptative communication architecture by mean
of the Chamaleon adaptation stack which enables the use of heterogeneous net-
works described in section 3.2.

3.1 Rime Communication Stack

Rime is a light and layered communication stack for sensor networks which
is designed to significantly reduce the implementation complexity and simplify
the development of communication protocols facilitating code reuse. Rime is
implemented in Contiki OS, with a code size less than two kilobytes and data
memory requirements on the order of tens of bytes. The layers are designed
to be extremely simple, both in terms of interface and implementation. The
lowest level primitive in Rime is anonymous best effort broadcast (abc). The abc
layer provides a 16-bit channel abstraction but no node addressing; it is added
by upper layers. The identified sender best-effort broadcast (ibc or broadcast),
which is the smallest module with a code size of 100 bytes, adds a sender identity
header field. One of the more important features of Rime is to shift the burden of
memory use from protocol implementations to Rime core. By making Rime part
of Contikis system core, which is always present in memory, loadable programs
are made smaller. Consequently, the energy consumption for program loading

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 252



Flexible Prototyping for Ad Hoc Wireless Sensor Network Protocols 5

is reduced. To reduce memory requirement, Rime uses a single buffer for both
incoming and outgoing packets. Layers that need to queue data, copy the data
to dynamically allocated queue buffers. Figure 1 shows the Rime architecture, in
which many channels between interconnected nodes can coexist. The reference [9]
gives a detailed description of the functionality of each Rime layer.

Fig. 1. Contiki stack diagram.

3.2 Chameleon Adaptation Layer

Chameleon is an adaptative communication architecture for sensor networks. It
consists of a set of packet transformation modules which adapts frames comming
from Rime stack to a standard communication frame. It is designed to be able to
adapt to a variety of different underlying protocols and mechanisms while being
expressive enough to accommodate typical sensor network protocols.

One of the main problems of specifying an interoperable communication ar-
chitecture is finding a universal header format. Such a header format must be
both expressive enough to encompass all communication patterns supported by
the architecture and flexible enough to allow for future expansion of the ar-
chitecture. For a WSN architecture, the problem is even more challenging, as
the header format must be small enough to be efficient over low-power radio
links with small maximum packet sizes. Chameleon takes a different approach
to the problem of finding a common packet header format. It does not define
any packet headers at all. Rather, it uses packet attributes, an abstract repre-
sentation of the information usually found in packet headers. Packet headers are
produced by separate header transformation modules that transform application

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 253



6 Juan Leal Licudis, Juan Abdala, Guillermo Riva, and Jorge Finochietto

data and packet attributes into packets with headers and payload. By using dif-
ferent Chameleon modules, it is possible to create packets that conform to any
given packet header specification. Unlike other communication architectures, the
application running on top of Chameleon does not need to be changed to make
it run over those different underlying communication mechanisms. The use of
packet attributes makes it possible to adapt the output from the protocol stack
to other communication protocols such as link and MAC layer protocols and
TCP/IP.

4 Case Study: Probabilistic Query Routing

4.1 Motivation

The most used mechanism to obtain information from WSNs is the pull-based
approach. In this case, the coordinator node injects data requirements in the net-
work, and sensor nodes propagate those queries through multihop communica-
tion, flooding the network. This process is normally known as query diffussion or
dissemination. After that, all nodes begin to answer to the coordinator. This last
process is named data collection phase. When coordinator receives all answers,
it can obtain different kinds of data statistics. This approach is unapropiate
for large sensor networks, where a lot of energy is expended in data commu-
nication. In most recent approaches, in-network data processing techniques are
applied in data collection phase, such as data aggregation, data fusion, etc. With
these mechanisms, a big reduction of the energy consumption is obtained. How-
ever, some applications enable the possibility to make more efficient the query
diffusion reducing the search space in order to save more energy and to pro-
long the network lifetime. Applications that are included in this group are for
example to determine which nodes have readings in a specific range, the maxi-
mum/minimum reading, etc. For this case, the query diffussion mechanism can
be improved by using probabilistic data-centric routing. The data-centric ap-
proach enables to improve the routing mechanism by making use of the sensed
data in queried nodes. The only restriction is that functions implemented in
nodes must be simple and energy reduced, because the constrained energy in
WSNs. This last application motivates us to develop an efficient query routing
mechanism. In section 4.3 a detailed description of this mechanism is given.

4.2 Network Model

We consider a flat and unstructured WSNs of uniformly scattered sensor nodes
over a square geographic area. A sink or coordinator node injects query messages
that are routed through the network to search relevant data. In flat networks all
nodes have the same functionality. In unstructured networks sink node has no
knownledge where the target resides, it uses blind sequential search for query-
ing. Nodes can exchange messages with all neighbor nodes by using broadcast
transmission mechanism within a fixed circular communication range. The co-
ordinator node is connected to a PC through USB port in order to analyze the
responses.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 254



Flexible Prototyping for Ad Hoc Wireless Sensor Network Protocols 7

4.3 Probabilistic Query Routing Description

We describe the case of searching the maximal value sensed in the network. The
coordinator node sends query messages to nodes requiering information. When
each sensor node receives the query message, it compare the query value with
its reading and determines if it has a significant value. In this sense, each node
can take three different desitions:

• If its reading is bigger than the value propagated in query message, the
node is set to answer to the coordinator after a periode of time, and forward the
query message to its neighboors updated with its value (1).

• If its reading is lower than the value propagated in query message, the
node is not set to answer the query, and it computes the probability to continue
forwarding the message with the original value. This desition is based on the
comparison between a number which is dependent of the difference between
sensor reading and the value in query message and a parameter named T, and
a random number. If the random number is lower than the first one, the query
message is forwarded but with the original value (2). If the random number is
higher than the first one, the message is dropped and node does not continue
forwarding the message (3).

The parameter of control of this probabilistic mechanism is the T value. With
high T values, the proposed mechanism performs as flooding, the query error
is zero but the energy cost is high. In the other case, with low T values, this
mechanism performs as hill climbing algorithm, where the query propagation
continues while improvements in the solution take place. In this last condition,
a low energy cost is requiered to fetch data from relevant nodes, but the query
error is high. There is a compromise between query error and query cost that
must be considered based on the specific application of the sensor networks.

(a) (b)

Fig. 2. Contiki stack (a), Threads implementation (b).

The query routing mechanism was implemented using two threads as is
showed in Figure 2. This application takes advantage of using the lower layer of
the Rime stack (abc), such as Application 2 in Figure 1.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 255



8 Juan Leal Licudis, Juan Abdala, Guillermo Riva, and Jorge Finochietto

4.4 Simulation

In order to evaluate the performance of the query routing mechanism, we use
Cooja cross-level network simulator [10]. Cooja is an open discrete event simu-
lation package for the Contiki operating system that enable simultaneous sim-
ulation at diferent levels, such as networking level, operating system level and
machine code instruction set level. Cooja is implemented in Java, but allows
software to be written in C by using Java Native Interface. Models of different
kinds of sensor nodes are included in the simulator (ie MicaZ, SkyMote, and
ESB), in order to obtain realistic simulations. Different configuration parame-
ters are available in this simulator, such as radio coverage, data traffic, etc. A
time line tracks the state of each radio transceiver, through which it is possible
to determine the power consumption in the network. Figure 3 shows the network
behaviour using the proposed mechanism in cases of low and high T values. We
can see that the routing mechanism is more aggresive in the last case than in
the first one.

(a) (b)

Fig. 3. Simulation in Cooja environment. Behaviour of the proposed mechanism with
(a) low T value, and (b) high T value.

4.5 Implementation

In order to evaluate the behaviour of the proposed mechanism in a real scenario,
it was implemented on Atmel RZRAVEN sensor nodes [11] [12], as is showed in
Figure 4. The network is conformed by one USBRAVEN connected to the PC
through USB interface as coordinator, and six AVRRAVEN sensor nodes. The
first one makes use of a AT90USB1287 8-bits low-power microcontroller. The
second ones make use of two 8-bits low-power microcontrollers (ATmega1284P
with 128 Kbytes of flash and 16 Kbytes of SRAM and ATmega3290P with 32
Kbytes of flash and 2 Kbytes of SRAM) interconnected between them by a se-
rial interface. The ATmega1284P is connected to the radio transceiver, and the

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 256



Flexible Prototyping for Ad Hoc Wireless Sensor Network Protocols 9

ATmega3290P has the function to manage the sensors and optionally to con-
trol the display. The AT86RF230 low-power 2.4GHz radio transceiver [13] for
IEEE802.15.4-2003 applications is used both in coordinator node and in sensor
nodes. Devices availables in these sensor nodes are temperature sensor, micro-
phone, and speaker. In the actual implementation, only temperature sensors
readings are considered as data source.

Fig. 4. Implementation of probabilistic query routing using RZRAVEN sensor nodes.

In table 2, a comparison of the memory requierement using Rime and uIP
with UDP/IPv6 for the same application of a probabilistic routing mechanism
in sensor nodes is shown.

Table 2. Memory use for the application using Rime and uIP comm stacks

`
`

`
`

`
`

`
`

`
`

`
Memory (bytes)

Stack
Rime uIP & IPv6

Program 20728 (15.8%) 37416 (28.5%)
Data 1776 (10.8%) 4076 (24.8%)
EEPROM 8 (0.2%) 8 (0.2%)

In order to capture and analyze the data traffic in the network, a coordinator
node hearing the wireless channel and sending the packets through USB to a PC
executing Wireshark network analyzer was used.

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 257



10 Juan Leal Licudis, Juan Abdala, Guillermo Riva, and Jorge Finochietto

4.6 Energy Consumption Analysis

The most energy consumption in WSNs resides in the radio communication.
In this way, we want to compare the benefits by implementing our mechanism
using Rime stack respect to the a IPv6-enabled implementation. To quantize
the energy saving by using the different kind of communication protocols, an
analysis of the energy consumption requiered to transmit until 10000 packets was
taking in account. Figure 5 shows the energy consumption using IPv6, Rime in
the actual implementation, and Rime in a future implementation (implementing
bit code optimization). The exact energy consumption values of sending 10000
packets are 1.10 J for IPv6, 0.89 J for Rime, and 0.82 J for Rime optimized. This
parameters are estimated considering the maximal power transmission (+3 dBm)
and maximal baudrate (250 kBps) of the AT90RF230 radio transceiver [15].

Normally, low-power microcontrollers implemented in WSNs approximately
requiere 1 nJ per instruction. The diference in energy consumption between using
IPv6 and Rime in the actual implementation is equivalent to compute 210 millon
of instructions.

0

0.2

0.4

0.6

0.8

1

1.2

0 2000 4000 6000 8000 10000

E
ne

rg
y 

(J
ou

le
s)

Packets

Energy Consumption

Rime (Future Implementation) - 15 Bytes
Rime (Actual Implementation) - 32 Bytes

uIPv6 - 71 Bytes

Fig. 5. Energy consumption by using Rime and IPv6.

5 Conclusion and future work

In this paper, we proposed a flexible and energy-efficient form to implement and
validate new in-network processing mechanisms and communication protocols

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 258



Flexible Prototyping for Ad Hoc Wireless Sensor Network Protocols 11

in WSNs, such as the proposed probabilistic query routing mechanism. As a
future work, we want to increase the network size and implement over the air
programming in order to disseminate the code fastly.

Acknowledgment This work is partially funded by the Universidad Tecnolog-
ica Nacional - FONCyT IP-PRH 2007 Posgraduate Grant Program and by the
SECYT-UNC 2010-2011 Research Program.

References

1. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy Conservation in
Wireless Sensor Networks: A Survey. Ad Hoc Networks 7, pp. 537-568 (2009)

2. Dunkels, A., Groenvall, B., Voigt, T.: Contiki - a Lightweight and Flexible Operat-
ing System for Tiny Networked Sensors. In Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks, IEEE Computer Society
Washington, DC, USA (2004)

3. Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker, B., Gru-
enwald, C., Torgerson, A., Han, R.: MANTIS OS: An Embedded Multithreaded
Operating System for Wireless Micro Sensor Platforms. ACM/Kluwer Mobile Net-
works & Applications, Special Issue on Wireless Sensor Networks, Vol. 10, No. 4
(2005)

4. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System Architec-
ture Directions for Networked Sensors. In Architectural Support for Programming
Languages and Operating Systems (2000)

5. Gay, D., Welsh, M., Levis, P., Brewer, E., Von Behren, R., Culler, D.: The nesC
language: A holistic approach to networked embedded systems. In Proceedings of
the ACM SIGPLAN 2003, Conference on Programming Language Design and Im-
plementation, USA (2003)

6. Dunkels, A., Schmidt, O., Voigt, T., Ali, M.: Protothreads: Simplifying Event-Driven
Programming of Memory-Constrained Embedded Systems. In Proceedings of the
Fourth ACM Conference on Networked Embedded Sensor Systems, USA (2006)

7. IEEE Computer Society: IEEE Standard 802.15.4, IEEE Standard for Information
technology, Part 15.4; Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks (2003)

8. Dunkels, A.: Full TCP/IP for 8-Bit Architectures. In Proceedings of the first inter-
national conference on mobile applications, systems and services, USA (2003)

9. Dunkels, A., Oesterlind, F., He, Z.: An Adaptive Communication Architecture for
Wireless Sensor Networks. In Proceedings of the Fifth ACM Conference on Net-
worked Embedded Sensor Systems, Australia (2007)

10. Oesterlind, F., Dunkels, D., Eriksson, J., Finne, N., Voigt, T.: Cross-Level Sensor
Network Simulation with COOJA. In Proceedings of the First IEEE International
Workshop on Practical Issues in Building Sensor Network Applications (2006)

11. Atmel - AVR2015: RZRAVEN Quick Start Guide
12. Atmel - AVR2016: RZRAVEN Hardware User’s Guide
13. Atmel - AT86RF230 Datasheet
14. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 Packets

over IEEE 802.15.4 Networks. Network Working Group - RFC 4944 (2007)
15. Atmel - AVR2007: IEEE802.15.4 MAC power consumptions for AT86RF230 and

ATmega1281

40JAIIO - AST 2011 - ISSN: 1850-2806 - Página 259




