
Can quality-attribute requirements be identi�ed

from early aspects?

QAMiner: a preliminary approach to quality-attribute
mining

Alejandro Rago1,2, Claudia Marcos1,3, Andrés Diaz-Pace1,2

1 ISISTAN Research Institute, UNICEN University, Campus Universitario
Paraje Arroyo Seco, B7001BBO, Tandil, Bs. As., Argentina
Te: +54 (2293) 439682 Ext. 42 - Fax: +54 (2293) 439681

2 CONICET, National Council for Scienti�c and Technical Research
C1033AAJ, Bs. As., Argentina

3 CIC, Committee for Scienti�c Research
B1900AYB, La Plata, Argentina

{arago,cmarcos,adiaz}@exa.unicen.edu.ar

Abstract. Specifying good software requirement documents is a di�-
cult task. Many software projects fail because of the omission or bad en-
capsulation of concerns. A practical way to solve these problems is to use
advanced separation of concern techniques, such as aspect-orientation.
However, quality attributes are not completely addressed by them. In
this work, we present a novel approach to uncover quality-attribute re-
quirements. The identi�cation is performed in an automated-fashion, re-
lying on early aspects to guide it and using ontologies to model domain
knowledge. Our tool was evaluated on two well-known systems, and con-
trasted with architectural documents.

Keywords: quality attribute, software requirement, crosscutting concern, early
aspect, use case speci�cation

1 Introduction

The importance of precise and complete software requirements speci�cation has
been longly recognized by the software development community [13]. In addition,
quality-attribute requirements, which describe constraints on the development
and behavior of a software system [3], are a key factor for the success of a soft-
ware project. Achieving a good separation of concerns improves requirements
and reduce problems such as refactorings in later stages [16]. Also, detecting
and analyzing quality attributes in early development stages provides insights
for system design, reduces risks, and ultimately improves the understanding of
the system.
A common problem, however, is that quality-attribute information tends to be

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 192



understated in requirements speci�cations, and scattered across several docu-
ments. Thus, learning quality attributes becomes usually a time-consuming task
for analysts. Recent developments have made it possible to mine concerns semi-
automatically from textual documents, applying state-of-the-art natural lan-
guage processing and information retrieval algorithms [11]. Several approaches
to identify crosscutting concerns and to encapsulate them using aspect-oriented
techniques are available [2,17]. At the requirements level, early aspects are used
to enclose crosscutting properties into single modular units.
Yet, while using aspects increases the separation of concerns, it does not entirely
address quality attributes. Many authors have suggested the existence of a rela-
tionship between (early) aspects and quality attribute requirements [16,4], but
still no work (as far as we know) has dealt with this issue. We believe that many
early aspects actually derive into quality-attribute concerns (although, not every
early aspect will have quality-attribute connotations). For example, the analysis
of a distribution early aspect may reveal an availability quality-attribute.
This work presents a new approach to detect potential quality-attribute require-
ments. It uses use case speci�cations and early aspects (detected with another
tool) as input. Domain knowledge is modeled in an ontology, which is latter used
for identi�cation purposes as well as con�dence calculations.
The rest of the paper is organized as follows. Section 2 discusses related works
which addressed quality attributes in requirements. Section 3 presents our pre-
vious work to improve software requirements. Section 4 introduces our approach
to mine quality attributes. Section 5 demonstrates the performance of a proto-
type tool on two case studies and Section 6 explains the �ndings and potential
extensions of this work.

2 Related works

A growing interest in speci�cation strategies, modeling techniques and semi-
automated approaches has emerged to improve software requirement documents.
We are mainly concerned with the latter. Existing works are divided in two
categories: approaches to specify/detect early aspects and approaches to spec-
ify/identify quality attributes.
Moreira et al. [12] introduce an approach to identify and specify quality at-
tributes that crosscut software requirements. It includes a systematic integration
between quality attributes and functional requirements. It de�nes three main ac-
tivities: (i) identi�cation, (ii) speci�cation, and (iii) integration of requirements.
Döer et al. [8] present an approach which goal is to achieve a minimal, com-
plete and focused set of measurable and traceable nonfunctional requirements.
A meta-model is de�ned to support the approach. It can be instantiated total
or partially, in a tailored quality model. This two approaches prescribe a series
of activities to address quality attributes. However, Moreira's approach does not
discriminate between crosscutting concerns (i.e., early aspects) and quality at-
tributes, and Döer approach is very complex to be carried out and does not
encapsulate crosscutting requirements correctly.
Cleland Huang et al. [7] present a automated approach to identify quality at-
tributes in software requirement speci�cations. It uses a supervised classi�cation

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 193



technique to uncover quality attributes scattered across multiple documents. Af-
ter training, the classi�er characterize quality attributes with keywords called
indicator terms, which denotes frequent words occurring in the presence of a
quality attribute. Casamayor et al. [6] present a nonfunctional classi�cation tech-
nique, which also uses semi-supervised learning classi�cation technique to cat-
egorize quality-attributes. Requirements are labeled accordingly to the trained
classi�er. Bass et al. [4] present an approach to identify early aspects using ar-
chitectural reasoning. It starts de�ning quality scenarios and moves to design in
a semi-automatic fashion, using architectural tactics and their associated frame-
works. Compared to our work, Bass' approach takes the opposite direction that
QAMiner, starting from quality-attribute scenarios to architectural aspects, in
contrast to going from early aspect towards quality attributes.

3 Previous work

Recently, we have investigated on early crosscutting concerns identi�cation and
early aspect refactorings [14,15]. Our main objective was to automatize the detec-
tion of crosscutting concerns in software requirement speci�cations, particularly
in use case speci�cations. Given the system use cases, a lexical, syntactical and
semantical analysis is applied to accumulate knowledge about concerns. Several
advanced natural language techniques and information retrieval algorithms are
used, including semantical dictionaries. Afterward, an action-oriented identi�-
cation graph [18] is built, to unify and ease the concepts occurring in the use
cases. In detail, the graph detaches verbs and direct objects placed in the same
sentence, and connect them with arcs. Furthermore, a semantical clustering tech-
nique is executed to alleviate issues like synonyms and ambiguities (inherent to
natural-language writing). Finally, this graph is transversed to look for multi-
ple occurrences of the same behaviors. The output of this approach are sets of
semantically-related concerns that are scattered in di�erent documents (that is
to say, crosscutting). Each set is composed with many pairs of <verb, direct
object> which represent a particular concern. We developed a working proto-
type, called SAET (Semantic Aspect Extractor Tool), which assist requirement
engineers during the crosscutting concern identi�cation process, allowing them
to provide feedback and to correct false positives.

4 QAMiner approach

A strategy to improve the understanding of a system, is to identify crosscut-
ting concerns in software requirements speci�cations. That way, concerns are
correctly encapsulated (in early aspects) and we bene�t for having a good sep-
aration of concerns. However, those crosscutting concerns may still be linked
somehow to quality attributes of the system. Our approach, called QAMiner
(Quality-Attribute Miner), aims at identifying and uncovering hidden quality
attributes in software speci�cations, making explicit the relationship between
early aspects and quality attributes.
QAMiner takes as input information from requirements documents (particu-
larly, use case speci�cations) and early aspects of a system previously detected

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 194



with SAET. A deep analysis is performed over use case speci�cations and early
aspects, using as knowledge source a de�ned quality-attribute ontology. This
ontology it is bounded to software qualities attributes and scenarios domain,
built and maintained by software architects using their expertise in software
development. With its help, QAMiner is able to determine precise associations
between concerns of the system and quality attributes. QAMiner generates as
output a map of <quality attribute, con�dence>, in which �quality attribute�
stands for a particular quality attribute of the ontology and �con�dence� stands
for a numerical value representing the belief about the relationship between the
particular quality attribute and the concern.

Fig. 1: QAMiner activities

Figure 1 shows the �ow of activities executed by QAMiner to detect quality
attributes. The work�ow is divided in two main stages. The �rst, Token genera-
tion, deals with preprocessing algorithms to reduce noise in the input text (e.g.,
eliminating stop-words) and the generation of annotations of interest over text
(such as weighted tokens). The second, Token analysis, handles the association
between the words processed in the previous stage and the quality attributes
de�ned in the ontology. To weight how related this words are, QAMiner leverage
on instances loaded in the ontology to measure percentage rates.
There are two steps in which stakeholders interact with QAMiner. To de�ne and
maintain complete and minimal quality-attribute ontology and to load repre-
sentative instances. After the analysis is done and a set of quality attributes is
found, those are presented to requirement analysts. It is their responsibility to
determine if the candidates are actual manifestations of quality attributes and
to establish changes in requirement documents.
In the following subsections, these stages are described in detail.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 195



4.1 Token generation

This stage is responsible of processing the input of QAMiner, that is, the use
case speci�cation documents and the early aspects identi�ed with SAET. The
main goals of Token generation are the extraction of tokens from inputs, the ap-
plication of �lters to remove noisy information, and the augmentation of tokens
using attributes.
QAMiner starts by collecting words from use cases and early aspects and en-
capsulating them into tokens. A token is a basic unit of text. Then, tokens are
preprocessed and transformed using a simple format. Each token can have sev-
eral attributes attached. Attributes have the form of <attribute, value> (Table
1). Using attributes allows independent transformations to be applied using a
pipe-and-�lter style [3]. Each �lter is a processing unit that produces modi�ca-
tions (e.g., augmentation, re�nement or transformations) over tokens and their
attributes. QAMiner utilizes �ve �lters. Each of these �lters performs the fol-
lowing functions: (i) lower case, transforms the word into lower characters, (ii)
stop words, removes non-useful words in information retrieval activities, such as
articles and prepositions, (iii) stemmer, transforms the words to its root form,
(iv) weighting, assigns values to tokens according to their location in documents,
(v) occurrences, augments tokens with statistical data, precisely with their count
number in the documents.

Table 1: Token attributes

Attribute Description Value Example

id unique token
identi�er

identi�er
number

<id, 1001>

kind originating
document

use case or
early aspect

<kind, use case>
<kind, early aspect>

section token
location in
document

brief
description,
basic �ow,

etc.

<section, basic �ow>
<section, alternative �ow>

<section, special requirements>
<section, verb-dir.object pair>

occurrences token count count
number

<occurrences, 3>
<occurrences, 8>

weight scoring by
relevance

score
number

<weight, 1>
<weight, 5>

For example, let's suppose that the word �stored� is retrieved from a use case.
The attribute <id, 2000> is generated. Because the word is located in the basic
�ow of a use case, attributes <kind, use case> and <section, basic �ow> are
generated. The lower case �lter does not modify the word, because it is already
in lower case. The stop words �lter does not remove the token, because it is a
relevant word. The stemmer �lter reduces the word �stored� to its root, �store�.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 196



The occurrences �lter counts two times this token in the documents and gen-
erates the attribute <occurrences, 2>. Finally, using a preestablished weighting
scheme, the attribute <weight, 4> is generated.

4.2 Token analysis

This stage carries out the analysis necessary to identify potential quality-attributes
from the tokens previously extracted. It consist of two main activities. The �rst
activity calculates a con�dence value for each token with a particular quality
attribute. This con�dence represents the membership of a token to a quality at-
tribute. The calculation is performed relying on a domain-de�ned ontology and
exploring the relationships found in it. The second activity builds a map for each
early aspect and their associated use cases, summarizing the con�dence values
of its tokens for each quality attribute.
An ontology is a data model that describes concepts (also known as classes)
in a speci�c domain, properties that describe di�erent characteristics of a con-
cept, and constraints over these properties. In addition, instances are particular
examples of domain information, represented using the concepts of ontology.
Our approach builds upon a quality-attribute ontology which models quality
attributes and their corresponding scenarios (see Figure 2). The construction
rationale of the ontology followed de�nitions explained in [3]. Many concepts
were modeled, like quality attribute and quality-attribute scenarios (both gener-
als and concretes), as well as parts of concrete scenarios, such as source, stimulus,
response, among others. Multiple instances of quality-attribute scenarios were
loaded. These were de�ne by experimented software architects, using as source
of information several internal projects. In this work, we modeled six quality at-
tributes and their corresponding scenarios: Availability, Modi�ability, Security,
Usability, Performance and Testability. For example, Figure 3 shows instances
of a Modi�ability and a Availability quality-attribute scenario. Filled boxes de-
notes instances of concepts, like in 3a �be in degraded mode� is an instance of
the concept ConcreteResponseMeasure.

The association of an early aspect and quality attributes is performed by match-
ing its composing tokens with instances of the ontology. That is, for each token
the approach �nds whether a token matches with parts of concrete scenarios
and whose quality attributes are described by them. Matchings between tokens
and parts of scenarios are computed using pattern matching techniques and tak-
ing advantage of the preprocessing algorithms applied in the Token generation
stage. If a token matches more than one part of a single scenario, disambiguation
heuristics are applied.

The calculation of the con�dence values of a token is carried out as follow. First,
QAMiner infers those scenarios related to the matching part. Second, using the
relationship �isSpeci�cOf� of the ontology, the approach counts down how many
times those scenarios participate in a quality attribute, and determine a mem-
bership percentages for each quality attributes. For example, a token �latency�
is found to be a ResponseMeasure part. Exploring the ontology, it is determined
that 40 quality-attribute scenarios are related to that particular instance of the

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 197



Fig. 2: Quality-attribute ontology

part. Of the 40 scenarios, 30 are associated to a Performance quality attribute,
8 to Availability and 2 to Modi�ability. Thus, QAMiner calculates with 75% of
con�dence that token �latency� is a Performance quality attribute, 20% Avail-
ability and 5% Modi�ability.
Percentages are adjusted accordingly to the occurrences and weight attributes
generated previously. Then, the relationship of an early aspect with each qual-
ity attribute is determined as the average of the adjusted con�dence values of
its composing token. QAMiner generates suggestions selecting those quality at-
tributes with the highest con�dence di�erence(s). This means that, for a single
early aspect, it is possible to detect more than one quality attribute associated.

5 Preliminary evaluation

To evaluate the predicting performance of our approach, we run QAMiner over
two case studies. The �rst is the Health Watcher System (HWS) [9,10] and
the second the Course Registration System (CRS) [5] To determine the ability
to retrieve relevant quality attributes, we use measures from the Information
Retrieval area. The results were validated using architectural documents [20,19]
of the HWS and design drafts of the CRS [5].

5.1 Case studies

The HWS is a typical web information system for a city's health care program.
It allows online access to register complaints, read health notices, and query
regarding health issues. The reason for choosing the HWS is twofold. First,
requirement and design documents are available. Second, several researchers have

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 198



Fig. 3: Quality-attribute scenarios in the ontology

(a) Availability scenario (b) Modi�ability scenario

used this case-study and analyzed its quality-attribute properties. This system
counts with 9 use case speci�cations. The CRS is a distributed system to be
used within a university intranet. Some artifacts were available, such as use case
speci�cation, some analysis classes and un�nished design documents. It allows
students to apply to courses and obtain their grade reports, and professors can
register new courses and report student grades. This system counts with 8 use
case speci�cations. We detected the following early aspects in HWS and CRS use
case speci�cations, respectively (Table 2). The tests conducted use these early
aspects as input of QAMiner.

Table 2: Early aspects

Health Watcher System Course Registration System

Early aspects

Data Formatting
Persistency
Consistency
Distribution

Access Control
Error Handling

Persistency
Entitlement

Communication
Ease-of-use

Data Validation
Data Processing

5.2 Evaluation framework

We analyze QAMiner results in a similar way to classi�cation tasks. The em-
pirical evaluation of the approach used measures such as Recall, Precision and
Accuracy [1], adapted to this particular domain and problem. Particularly, sev-
eral binary parameters were collected during tests. True positives (TP) refer to
quality attributes suggested by QAMiner for an early aspect that are real quality

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 199



attributes of the system. False positives (FP) are those suggestions which are
not real quality attributes of the system. True negatives (TN) are those quality
attributes not suggested for an early aspect which were real quality attributes.
And False negatives (FN) are those quality attributes not related to an early
aspect which were not suggested. Figure 4 depicts the formulas to calculate Re-
call, Precision and Accuracy. Precision can be seen as a measure of exactness or
�delity (i.e., how much of the quality attributes identi�ed are correct), whereas
Recall is a measure of completeness (i.e., how much of all the existing quality
attributes are detected). Accuracy is similar to Recall, but it also takes into ac-
count the non-detection of incorrect quality attributes.

Fig. 4: Evaluation formulas

Recall = TP
TP+FN

Precision = TP
TP+FP

Accuracy = TP+TN
TP+TN+FP+FN

5.3 Evaluation results

To determine the binary parameters, the suggestions of QAMiner were con-
trasted with the architectural and design documents of both case studies [9,10,20,19,5].
From these documents, several quality attributes were collected. Table 3 illus-
trates these quality attributes.

Table 3: Real quality attributes

Health Watcher System Course Registration System

Quality
Attributes

Usability
Availability
Performance
Scalability
Modi�ability
Security

Modi�ability
Availability
Security
Usability

Performance

After executing our working prototype over the Health Watcher System and
the Course Registration System, QAMiner generates suggestions of quality at-
tributes for each early aspect. Figure 5 depicts the rationale to calculate TP, FP,

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 200



TN, and FN for both HWS (5a) and CRS (5b).

Fig. 5: Evaluation rationale

(a) Rationale for HWS (b) Rationale for CRS

The �rst column holds the input early aspects, the second column, QAMiner's
suggested quality attribute(s), and the third column, the real quality attributes
of the system. From an input early aspect of the �rst column, QAMiner sug-
gest those quality attributes of the second column which are connected with an
arrow. If the suggestions happens to be correct, then a connecting arrow be-
tween the predicted quality attribute and the real quality attribute is drawn. If
not, the predicted quality attribute in the second column is drawn with dashed
lines. In Figure 5a for example, QAMiner suggest three quality attributes for the
Persistency early aspect: Security, Availability and Modi�ability. Of the three
suggestions, two are real quality attribute of the system (Availability and Mod-
i�ability) and thus are connected to the quality attributes of the third column,
while the other (Security) is not a real quality attribute thus it has a dashed
outline.

QAMiner showed promising performance to suggest correct quality attributes
(Table 4). In HWS4, it obtained above 70% of Recall, which is high enough due
to the lack of instances in the ontology to detect scalability. In CRS, it obtained
a 100% of Recall, because all quality attributes were found. This outcome is
really important, because it means that QAMiner has a wide coverage of the
quality attributes of a system. Regarding Precision, it was not as good as Recall,
obtaining approximately a 60% in both case studies. Accuracy obtained high
scores, of about 90%. This last measure means that not only QAMiner detects
quality attributes, but also ignores correctly those quality attributes which are
not related to an early aspect.

4 Because one of the predicted quality attributes was found two times, we use 4 instead
of 5 true positives to calculate recall and accuracy in this case study.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 201



Table 4: Results

Health Watcher System Course Registration System
Real QAs 6 5

True positives 5 5
False positives 3 4
False negatives 2 0
True negatives 28 33

Precision 0,625 0,555
Recall 0,714 1,000

Accuracy 0,865 0,905

6 Conclusion

In this work we present a novel approach which takes advantages from early as-
pects to detect potential quality attributes. Our driven hypothesis was that early
aspects were a good source of information to start looking for quality attributes
of a system. A ontology of quality scenarios was built and used to uncover words
of early aspects related to a particular quality attribute.
A preliminary evaluation of this approach produced promising results, with high
Recall and Accuracy measurements. Moreover, we were able to validate the eval-
uation using architectural information from research peers.
The main contribution is two-fold. First, we corroborate empirically that many
early aspects derive into quality attributes. Second, we develop a prototype which
feed from early aspects and suggest quality attributes in a semiautomatic fash-
ion.
However, there is still room for improvements in our tool. We look forward to add
more quality attributes and even more instances to the ontology, to increase and
Precision and Recall. In addition, we count with several case studies to continue
evaluations and validation of the approach.

Acknowledgments. We would like to thanks to Francisco Bertoni and Se-
bastian Villanueva, which developed QAMiner and volunteer to carry out the
evaluation test, under our supervision.

References

1. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval, vol. 463.
ACM press New York. (1999)

2. Baniassad, E., Clarke, S.: Finding aspects in requirements with theme/doc. Early
Aspects: Aspect-Oriented Requirements Engineering and Architecture Design p. 16
(2004)

3. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-
Wesley Longman Publishing Co., Inc. (2003)

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 202



4. Bass, L., Klein, M., Northrop, L.: Identifying aspects using architectural reason-
ing. Early Aspects: Aspect-Oriented Requirements Engineering and Architecture
Design p. 51 (2004)

5. Bell, R.: Course registration system. http://sce.uhcl.edu/helm/RUP_course_
example/courseregistrationproject/indexcourse.htm (2010)

6. Casamayor, A., Godoy, D., Campo, M.: Identi�cation of non-functional require-
ments in textual speci�cations: A semi-supervised learning approach. Information
and Software Technology 52(4), 436�445 (2010)

7. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated classi�cation of non-
functional requirements. Requir. Eng. 12, 103�120 (May 2007), http://portal.
acm.org/citation.cfm?id=1269901.1269904

8. Doerr, J., Kerkow, D., Knethen, A.v., Paech, B.: Eliciting e�ciency requirements
with use cases (2003)

9. Greenwood, P.: Tao: A testbed for aspect oriented software development. http:
//www.comp.lancs.ac.uk/~greenwop/tao/ (2010)

10. Khan, S., Greenwood, P., Garcia, A., Rashid, A.: On the interplay of requirements
dependencies and architecture evolution: An exploratory study. In: Proceedings of
the 20th International Conference on Advanced Information Systems Engineering,
CAiSE. pp. 16�20 (2008)

11. Kof, L.: Natural language processing: mature enough for requirements documents
analysis? Natural Language Processing and Information Systems pp. 91�102 (2005)

12. Moreira, A., Araújo, J.a., Brito, I.: Crosscutting quality attributes for requirements
engineering. In: Proceedings of the 14th international conference on Software en-
gineering and knowledge engineering. pp. 167�174. SEKE '02, ACM, New York,
NY, USA (2002), http://doi.acm.org/10.1145/568760.568790

13. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceed-
ings of the Conference on The Future of Software Engineering. pp. 35�46. ICSE '00,
ACM, New York, NY, USA (2000), http://doi.acm.org/10.1145/336512.336523

14. Rago, A., Abait, E., Marcos, C., Diaz-Pace, A.: Early aspect identi�cation from
use cases using nlp and wsd techniques. In: Proceedings of the 15th workshop on
Early aspects. pp. 19�24. ACM (2009)

15. Rago, A., Marcos, C.: Técnicas de nlp y wsd asistiendo al desarrollo de software
orientado a aspectos. In: Argentinian Symposium on Arti�cial Inteligence (2009)

16. Rashid, A., Chitchyan, R.: Aspect-oriented requirements engineering: a roadmap.
In: Proceedings of the 13th international workshop on Early Aspects. pp. 35�41.
ACM (2008)

17. Sampaio, A., Chitchyan, R., Rashid, A., Rayson, P.: Ea-miner: a tool for au-
tomating aspect-oriented requirements identi�cation. In: Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineering. pp. 352�
355. ACM (2005)

18. Shepherd, D., Pollock, L., Vijay-Shanker, K.: Towards supporting on-demand vir-
tual remodularization using program graphs. In: Proceedings of the 5th interna-
tional conference on Aspect-oriented software development, March. pp. 20�24. Cite-
seer (2006)

19. Tabares, M., Anaya de Páez, R., Arango Isaza, F.: Un esquema de modelado para
soportar la separación y transformación de intereses durante la ingeniería de req-
uisitos orientada por aspectos. Avances en Sistemas e Informática 5(1), 189�198
(2008)

20. Zhang, H., Ben, K.: Architectural design of the health watch system with an inte-
grated aspect-oriented modeling approach. In: Computer Design and Applications
(ICCDA), 2010 International Conference on. vol. 1, pp. V1�624 �V1�628 (2010)

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 203

http://sce.uhcl.edu/helm/RUP_course_example/courseregistrationproject/indexcourse.htm
http://sce.uhcl.edu/helm/RUP_course_example/courseregistrationproject/indexcourse.htm
http://sce.uhcl.edu/helm/RUP_course_example/courseregistrationproject/indexcourse.htm
http://sce.uhcl.edu/helm/RUP_course_example/courseregistrationproject/indexcourse.htm
http://portal.acm.org/citation.cfm?id=1269901.1269904
http://portal.acm.org/citation.cfm?id=1269901.1269904
http://portal.acm.org/citation.cfm?id=1269901.1269904
http://portal.acm.org/citation.cfm?id=1269901.1269904
http://www.comp.lancs.ac.uk/~greenwop/tao/
http://www.comp.lancs.ac.uk/~greenwop/tao/
http://www.comp.lancs.ac.uk/~greenwop/tao/
http://www.comp.lancs.ac.uk/~greenwop/tao/
http://doi.acm.org/10.1145/568760.568790
http://doi.acm.org/10.1145/568760.568790
http://doi.acm.org/10.1145/336512.336523
http://doi.acm.org/10.1145/336512.336523

	Can quality-attribute requirements be identified from early aspects?



