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Abstract. Many modern systems must run in continually changing contexts. For
example, a computer vision system to detect vandalism in train stations must
function during the day and at night. The software components for image acqui-
sition and people detection used during daytime may not be the same as those
used at night. The system must adapt by replacing running components such as
image acquisition from color to infra-red. This adaptation involves context de-
tection, decision on change in components, followed by seamless execution of
a new configuration of components. All this must occur at runtime while mini-
mizing the impact of dynamic change on continuity and loss in performance. We
present Girgit, a lightweight Python-based framework for building dynamic adap-
tive software systems. We evaluate it by building a dynamically adaptive vision
system followed by performing rigorous experiments to determine its continuity
and performance.

Keywords: Adaptive Systems, Dynamic Adaptive Systems, Software Architecture, Frame-
work, Vision System

1 Introduction

Software development is stressed to adapt to needs budding from varying operating
environments. Operating environments can vary in terms of hardware platforms such
as desktop, servers or mobile devices, software operating systems, and external ele-
ments such as the weather, light conditions, or any information captured by a network
of sensors. While there is change in environment or context we see a need to maintain
continuity in software execution. Maintaining this continuity involves dynamic adap-
tation of software to new configurations given occurrences of different contexts. For
example, computer vision systems present the need for such dynamicity, where, for in-
stance, change in light conditions solicit the need for different types of cameras and
specific vision algorithms. What is the software framework to build such dynamically
adaptive systems (DAS) and how can we expect it to behave? This is the question that
intrigues us.

Currently, there are already existing frameworks that help create dynamically adap-
tive systems. For instance, frameworks such as DiVA ([1]) provide a high-level ap-
proach using aspect-orientation and model-driven engineering to build DAS. Among its
major drawbacks is its relatively new approach involving models and aspects that leads
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to a slow learning curve. It is also missing a study on the impact of the dynamic adap-
tation to continuity and performance. With lessons learned from existing frameworks
(see Section 5 for other examples) and prior experience in design and implementation
of a large vision system (Scene Understanding Platform, developed at PULSAR team
at INRIA Sophia-Antipolis) requiring dynamic adaptation we present our framework,
Girgit.

Girgit is a Python-based lightweight framework suitable to build open and closed
dynamic system [9]. It leverages the dynamic language abilities of Python such as dy-
namic module loading and introspection. It provides the basic functions of a DAS such
as loading/caching components, mapping context events to a configuration, and chang-
ing configurations at runtime. Girgit is easy to learn and use as it provides a small API
and its based on the well-known Python programming language. In this paper, we tailor
Girgit to perform dynamic scene understanding in video using components for vision
algorithms. We perform rigorous empirical studies to validate Girgit for performance in
terms of adaptation time and frame rate. We observe that mean adaptation time between
configurations is 8 ms without component caching and less than 2 µs with caching of
components. This negligible adaptation time has very little effect on the resulting frame
rate hence preserving continuity. We also perform a comparative study between pure
C++ implementations of configurations and configurations in the Girgit framework for
the same set of components. We observe that for processor intensive components the
Girgit framework behaviour is similar than the pure C++ implementation while pure
C++ implementations performs better for non-processor intensive components.
We may summarize the contributions in the paper as follows:
Contribution 1: Using Girgit we demonstrate that it is possible to easily build closed
and open dynamically adaptive systems.
Contribution 2: We also demonstrate through rigorous experimental validation that
dynamic adaptation has negligible effect on QoS parameters such as frame rate, and
adaptation time.
Contribution 3: We package the framework with several examples on an open source
license for external use.

The paper is organized as follows. In Section 2, we present some foundational mate-
rial to understand the problem and need of dynamic adaptation. In Section 3, we present
Girgit’s architecture and applications. In Section 4 we present the empirical evaluation
of Girgit. Related work is presented in Section 5. We conclude in Section 6.

2 Foundations

The foundations to understand and evaluate Girgit has two dimensions (a) dynamically
adaptive systems in Section 2.1 (b) QoS metrics to evaluate Girgit in Section 2.2.

2.1 Dynamically Adaptive Software Systems

An adaptive system is a system whose behavior can be changed during execution ac-
cording to the needs. Oreizy et al. on An architecture-based approach to self-adaptive
software [9] define the adaptive systems differentiating between systems that can change
by means of a pre-programmed set of configurations, from now on, closed-adaptive
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systems. Or by adding new configurations during run-time, from now on open-adaptive
systems. If the system the system can react to changes in the operating environment the
system is called self-adaptive. A definition of an autonomic system is ”A system that
can manage themselves given high-level objectives from administrators”, and can be
found on Kephart and Chess The Vision of Autonomic Computing[7]

Dynamically adaptive software systems are usually built on the monitor-analyze-
plan-execute over a knowledge base (MAPE-K) model shown in Figure 1. The MAPE-
K loop is a refinement of the Artificial Intelligence community’s sense-plan-act ap-
proach of the early 1980s to control autonomous mobile robots. The feedback loop
is a control management process description for software management and evolution.
The MAPE-K loop presented in Figure 1 monitors and collects events, analyzes them,
plans and decides the actions needed to achieve the adaptation or new configuration and
finally executes reconfigures the software system.

Fig. 1: (a) Vision System MAPE-K View of a Dynamically Adaptive System

2.2 QoS Metrics

In this paper, we evaluate Girgit based on non-functional Quality of service metrics. We
define the metrics as follows:

1. Frame Rate - It is the number of frames per second (fps) processed by a chain of
vision components at the output.

2. Adaptation Time - The time it takes to the system to change from the current running
configuration to the following taking in account the loading time of the dynamic
libraries and components needed to be able to run.

3 The Girgit Dynamic Adaptation Framework

Girgit is a lightweight 1 framework that allows dynamic reconfiguration of processing
chains and the components inside. Girgit’s core manages the relationship between com-
ponents, that can accept and return any data type. A special data type is that of Events.
These objects are treated in a special way by the core. The way in which the components
are wired together is described by a model specification.

Globally, the core components manage the interaction between components in a
dynamically adaptive fashion. The overall architecture for Girgit is presented in Figure
2.

1 At the submission date 929 lines of Python code according to the sloccount
(http://www.dwheeler.com/sloccount/) tool
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Fig. 2: Girgit’s Architecture

3.1 Architecture

Girgit contains core components are shown in Figure 2 and described below:
Model Specification: The model specification specifies, a set of configurations and
event/action pairs (rules) to change between configurations. A particular configuration
is defined as a set components, their parameters, the method that must be called, and
the interconnection between these components. A model specification is provided using
the Service Interface.
Service Interface: Provides the interfaces to interact with Girgit.
Dynamic Processor: Executes the current configuration as described by a model spec-
ification, finding out during runtime the component to execute, the method to call and
the set of parameters to use for the call. Also reconfigures either the processing chain
or the components.
Execution Manager: Manages the execution. Orchestrates the calls to the Event Man-
ager and the Dynamic Processing Chain.
Event Manager: Manages incoming events and suggests actions such as changing of
components or the complete processing chain. The rules to map events to actions are
specified in the model.
Module Manager: Loads and caches instances of components.

When Girgit is running it contains also dynamically loaded components intercon-
nected in a graph that we call Processing Chain. This graph contains information about
how the components are interconnected, as well as the temporal information of the data,
this way we can connect a component A to the data generated as output of component
B in some previous loop making feedback possible.

In this paper, we evaluate Girgit by building a vision system using it. In this case,
the processing chains are defined by components encoding vision algorithms such as
acquisition, segmentation, and blob construction. The components that can return events
use information from vision components to return a boolean value for a given event. For
instance, if an intrusion detection is an event as shown in Figure 2. A complex event
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may be encoded in only one event by a component that defines function over a set of
events.

3.2 Girgit’s Implementation

Girgit is implemented in Python due to its ability to introspect and load modules at
runtime/dynamically. Girgit can accept multiple configurations. Each of those configu-
rations define a processing chain, the event that triggers the configuration, the execution
order of the components in the processing chain and the parameters taken and returned
by the components. A processing chain is defined by a directed graph describing the
interconnection between the components. When multiple configurations are passed at
initialization, the initial configuration must be passed as well and the framework will
start running the configuration tagged as initial.

We explain a regular activity cycle in Girgit using the input model specification. The
main loop of Girgit is shown in Figure 3. The MainLoop component calls the process in
the ExecutionManager component. The ExecutionManager calls the process method
in the DynamicProcessor. The DynamicProcessor call all the components (using call-
Component) in the current configuration of a processing chain. The components may
return events to the DynamicProcessor which in turn sends the list of events to the Ex-
ecutionManager. The ExecutionManager sends the list of events to the EventMan-
ager by calling addEvents. The EventManager accumulates these events in a queue
and maps each event to an action in the order they are popped out. The mapping of
an event to an action is implemented in a Python dictionary (available from the model
specification) where every event is identified by a name. When an event matches a rule
the EventManager returns the pre-encoded action. The processed events are saved (up
to an adjustable length) in a history queue for rollback if necessary.
An action can be one of the following:
A1: Adaptation of an entire processing chain and its reconfiguration as shown in Figure
4 (a)
A2: Reconfiguration of a single component as shown in Figure 4 (b)

When action A1 is sent to the ExecutionManager it executes the encapsulating op-
eration reconfigure. The reconfigure operation invokes setConfig in the DynamicPro-
cessor as seen in Figure 4 (a). The operation setConfig first verifies that the appropriate
processing chain is loaded with a new configuration. This is verified by checkConfig. If
a new processing chain with a new configuration is invoked then we update a dictionary
containing the new components of the chain and its execution order/orchestration in
the configuration. We next verify if each component in the dictionary is already cached
from a previous step. If a component is not loaded then we execute loadComp to load
the new components using the ModuleManager. It also removes any unrequired com-
ponents from memory. The ModuleManager then returns control to the DynamicPro-
cessor which finally returns control to the ExecutionManager.

When action A2 is sent to the ExecutionManager it executes reconfigureCompo-
nent in DynamicProcessor from within the general operation reconfigure. The Dy-
namicProcessor calls update on the Component to change its parameters and reload
it while keep the rest of the chain intact.
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Girgit can load multiple processing chains in the same time, for instance, to con-
duct several experiments on the same real-time input. We use namespaces to avoid
collisions between components of different processing chains. The namespaces (Figure
5) are created by the ModuleManager which maintains references to components and
their respective processing chains in a dictionary. Each namespace is named after a pro-
cessing chain. When components are shared we have a global scope namespace that is
accessible to all configurations.

Fig. 3: Diagram that shows the sequence of calls for a cycle in the main loop

(a) Reconfiguration of a Processing Chain (b) Component Reconfiguration

Fig. 4: Reconfiguration

In Figure 2 we present the snapshot of a reconfiguration where the Face Detection
component replaces the Intrusion Detection component due to an Intrusion Detected
event. We first update the configuration dictionary and the execution order list with all
the new elements and erase the components that should not exist any more. We then
check the configuration and load uniquely the libraries and components that are not
already cached. In this case, we remove movement detection and replace it with blob
construction, face detection, and image window for visual inspection.

3.3 Example Execution in Girgit

We demonstrate dynamic adaptation in Girgit using Figure 6. Girgit starts in intrusion
detection mode which is the initial and current configuration. During the loop execu-
tion, When an intrusion is detected as shown in Figure 6a, an event is generated as
shown in Figure 2. The Execution Manager gets the event and asks the event manager
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Fig. 5: Representation of namespaces, showing an active processing chain (SimpleMovementDe-
tection) and a passive processing chain(Facedetection).

what to do, and this responds with an action corresponding to a change in configuration
that contains a new component for face detection. The Execution Manager instructs
the Dynamic Processor to change the configuration for the new one, this last compo-
nent asks the Module Manager to load the face detection component from hard-disk or
from memory cache. Finally, the processing loop continue and the result with the face
detection component ensues as shown in Figure 6b.

(a) Intrusion Detection (b) Face Detection

Fig. 6: Dynamic Reconfiguration from Intrusion to Face Detection. Figure 6a is before and Figure
6b is after

4 Empirical Evaluation

We empirically evaluate Girgit to answer the following questions:
Q1 How long does Girgit take to reconfigure or adapt?
Q2 How does adaptation in Girgit affect continuity of operation?
Q3 How does the execution with Girgit compares to a pure C++ configuration imple-
mentation?
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4.1 Experimental Setup

We evaluate Girgit using a total of eight different configurations. Each configuration
contains a different set of components and/or their parameter settings. Most components
encapsulate libraries in OpenCV [2] such as Pyramid segmentation and HAAR object
detection. The primary goal was to build dynamic adaptive vision test systems that
switch between configuration according to arriving events, for the evaluation purposes
the events where set to 5 seconds. We present the number and name of the different
configurations on the left side in Figure 7. The components used in the configurations
are shown on the right of Figure 7. We also provide the order in the processing chain
for these components in the configuration. For instance, OpenCV AVI reader is first in
the order in all configurations. The symbol× indicates absence of the component in the
configuration.

Configurations
ID Name
C1 SMOOTH SEGMENTATION
C2 FGD SEGMENTATION
C3 PYRAMID SEGMENTATION
C4 INTRUSION DETECTION
C5 FACE DETECTION PYR
C6 FACE DETECTION FGD
C7 FACE DETECTION
C8 VIDEO PLAYER

Configurations Details
Component C1 C2 C3 C4 C5 C6 C7 C8
OpenCV AVI Reader 1 1 1 1 1 1 1 1
Image Smoothing 2 × × 2 × × × ×
FGD Background Subtraction × 2 × × × 2 × ×
Pyramid Segmentation × × 3 × 3 × × ×
HAAR Detection × × × 3 3 3 2 ×
Image Window 3 3 4 4 4 4 3 2
Profiler × × × × × × 4 3

Fig. 7: Experimental Configurations

Using the first six configurations we perform the following experiments to answer
questions Q1 and Q2.
Experiment E1: For a single configuration (configuration C1) we execute 15 recon-
figurations of the same configuration (a) With caching and (b) Without caching. The
constant factor here is the configuration that remains fixed. The goal of this experiment
is to study stability in adaptation times and frame rate due to dynamic reconfiguration.
Experiment E2: In this experiment, we execute all pairs of configuration transitions
possible using the first six configurations (a) With caching and (b) Without caching.
The goal of this experiment was to introduce variation in configurations and check if
this affected adaptation times and frame rate. How stable is the adaptation time when
configurations change? The configurations were changed every 5 seconds.

For both experiments we measure the frame rate and adaptation times. We execute
the same experiment 100 times to validate the stability of our results.
Experiment E3: This experiment aims to evaluate the cumulative impact of the dy-
namic resolution of of the python wrappers and dynamic resolution of calls. We com-
pare the same behavior written in a pure C++ implementation and using Girgit. Two
configurations where used, a simple one that only reads and shows the image C7 (7)
and a more complex one that uses the HAAR algorithm C8.
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For this experiment we measure only FPS as it is the most meaningful QoS value for
video processing. The looping was left free to achieve the maximum FPS rate possible.
A sequence of the first 1000 frames of the same video where used for 4 runs. The FPS
was measured every 10 frames.

For all the experiments the input video was a long sequence from an office space
where there are multiple people entering and leaving the scene. The execution took
place in the following platform: Linux Fedora 14 x86 64, Intel(R) Core(TM) i7 CPU
Q720 @ 1.60GHz, Memory: 8GB.

4.2 Results and Discussion

The results of experiments E1 and E2 are summarized in this section. In Table 8, we
show the statistical results obtained during the experiment E1. We observe that there is a
considerable difference between the adaptation times with and without caching system
activated, having the cached system a much better absolute performance. Considering
that the minimum values in frame rate obtained are instantaneous values for the re-
configuration instant, that vision systems usually vary in performance when the video
situation change and that the mean frame rate is almost equal to the one with caching
system we can conclude that the system without cache actually do not have a meaning-
ful impact on the vision system overall performance. This result addresses question Q1
and demonstrate that Girgit indeed has a low adaptation time.

Stat Cache ON unit Cache OFF unit
Adaptation Mean 1.82 µs 8.00 ms
Adaptation Max 16.5 µs 15.6 ms
Adaptation Std Dev 8.16 µs 1.18 ms
Frame rate Mean 23.98 fps 23.74 fps
Frame rate Max 25.72 fps 31.35 fps
Frame rate Min 23.90 fps 16.25 fps
Frame rate Std Dev 0.38 fps 0.80 fps

Fig. 8: Adaptation times and fame rate for Experiment E1

Using the dynamic system with caching system we see no loss in frame rate. While
without caching there is a small loss in frame rate that does not seems to be significative
for this type of application. These results address question Q2. The continuity in frame
rate is largely preserved in Girgit.

In experiment E2, we vary the configurations to see its effect on adaptation time and
frame rate. As seen in Figure 9a, the caching has high adaptation times for the first few
configurations as components are loaded and cached. However, after the components
are cached the adaptation time drops drastically (peak not seen in the plot is 0.16 ms
and less than 2 µs mean). However, when the caching system is not used (Figure 9b),
the adaptation times are higher peaking at 15.6 ms (not showed in the boxplot) and
with a mean of 8ms. This results sheds light on question Q1. It demonstrates that when
configurations change caching allows reduction in adaptation times later in the runtime
life of Girgit. With respect to Q2 there is also more stability in the adaptation times. The
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frame rate with caching is also stable (not shown in the paper due to space limitations)
when multiple configurations change.

(a) Caching ON (b) Caching OFF

Fig. 9: Adaptation times for the 30 possible configuration transitions (transition every 5 seconds)
all pairs of the 6 configurations with/without caching. X-axis represent the transitions, Y-axis
represent adaptation time in seconds

In the experiment E3, we compare the performance, in terms of frame rate (FPS) for
2 different configurations: C7 and C8. Each configuration was programmed: (a) entirely
in C++ in a dedicated non modular program for achieving the maximum performance;
(b) using components with a Girgit configuration file. Was not a surprise that the FPS is
higher in C++ than with Girgit 2 for the example of a video player 10a. But, when the
algorithms in the modules are more processor intensive (Figure 10b), we can observe
that Girgit’s throughput shows no significative difference with the C++ execution.

(a) Video Player (b) Face Detection

Fig. 10: Frame rate comparison between a pure C++ program and the same behaviour imple-
mented in Girgit

2 that has to resolve the execution modules, methods, calls and order in runtime, and is imple-
mented in Python, an interpreted language running on a Virtual Machine
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We conclude dynamic adaptation, and in particular, our platform, is not only suit-
able for applications where dynamic adaptation is needed and where the algorithms to
execute are processor intensive but has many advantages respect a static program.

4.3 Threats to Validity

The experiments performed on Girgit is within certain bounds. We execute experiments
for eight vision components. Although, our experiments represent a realistic vision sys-
tem we may imagine a case study with 100s of components. Therefore, the scalability
of Girgit to hundreds of components is an issue that needs investigation. Using com-
ponents with badly managed memory can result in errors in experimental observations
such as memory usage. In our case study, we thoroughly verify the 8 components for
non-existence of memory leaks. We demonstrate continuity of Girgit in terms of frame
rate and adaptation times for a given set of configurations. However, continuity can
have different semantics. For instance, continuity of tracking an object when context
changes. Finally, we perform experiments using a long video sequence from a large
office with several people coming in and out of a scene. We need to validate Girgit
for various application scenarios and case studies. Our study shows that this dynamic
adaptive framework is not suitable for non processor intensive processing chains that
need a high loop throughput. Debugging components in Girgit is an important challenge
which needs further investigation. At present, individual components have to be tested
and debugged separately. In case we have to deal with faulty components at runtime we
may consider applying approaches based on Acceptability Oriented Computer [11] and
replacing the faulty components to keep the system running.

5 Related Work

Building dynamically adaptive software is a hot area of work in software engineering.
This interest in dynamic adaptation comes with maturity in component-based/service-
oriented software, dynamic and introspective languages such as Python, and distributed
publish-subscribe systems [4]. Dynamic adaptation between a number of components
with different parameters presents a large space of variability that is best managed
using a high-level model [1] [12]. Models@runtime [8] is the current trend to man-
age/reason about dynamically adaptive software. Examples of dynamically adaptive
software frameworks include MOCAS [3], and RAINBOW [5]. Girgit maintains a spec-
ification of the adaptive system configuration which is a model@runtime. Girgit intro-
spectively adapts to the changes made to the model. We apply Girgit’s framework to the
large case study of a vision system.

We evaluate Girgit for QoS using rigorous empirical studies. Empirical studies in
dynamically adaptive systems validate its functional and non-functional behavior by
exploring the domain of its variability [6] [10]. In our experiments, we cover all possible
component configurations of a vision system built within Girgit and compare behaviour
of Girgit to a pure C++ application.

6 Conclusion

We presented Girgit, a framework for building dynamic adaptive systems that allows
creating open and closed dynamic systems as well as autonomic systems. In first in-
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stance we show the architecture used for the framework. Later we used Girgit to build
a dynamic adaptive vision system case study that clearly separates the dynamic adapta-
tion details from the actual vision components. With which we demonstrate that there
is negligible effect on performance due to dynamic adaptation. This is especially true
with caching is used and for applications where the modules are processor intensive.
One of the main problems with dynamic adaptation in vision is the resilience of peo-
ple in using them with performance being a big question mark. With this article we
hope clarifying the scope and use of dynamic hybrid (in more than one programming
language) adaptive systems and helping to eliminate the apprehension in the mind of a
vision expert about the performance related feasibility of building dynamically adaptive
vision systems.

The framework facilitates creating and prototyping dynamically adaptive systems
and allows open and closed dynamic adaptive systems. The case of open adaptive is be-
ing used for interactively modify the systems in study. We are currently using the frame-
work in the PULSAR team at INRIA Sophia Antipolis for research and setup tasks.
More information can be found at http://www-sop.inria.fr/teams/pulsar/Girgit/.
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