
Visual Scenarios for addressing the Aspect
Interference Problem★

Fernando Asteasuain and Vı́ctor Braberman

Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires
{fasteasuain,vbraber}@dc.uba.ar

Abstract. One of the most challenging problems in the aspect-oriented
community is known as the aspect interference problem. This situation
arises when the behavior to be introduced by two or more aspects is ap-
plied at the same point of interest. In order for the developer to resolve
this conflict aspects’ interaction and composition must be easy to analyze
and manipulate. Under this context, we explore how FVS, a declarative
visual language, can address this significant issue by providing a declara-
tive and powerful pointcut model. In addition, FVS allows the possibility
of reasoning about violating behavior, that represents a highly valuable
information for the developer.

1 Introduction

In the last years, aspect orientation has emerged as an interesting approach to
deal with complexity in software artifact description. Aspect oriented technology
is rooted in the modularization of crosscutting concerns, which seems an inter-
esting software engineering principle. First introduced as a technique applied
in the codification phase, aspect orientation was quickly adapted to perform in
other software development phases such as requirement engineering, modeling
and design. In particular, applying aspect orientation in specifying requirements
in early stages seems pretty natural [7], since requirements are normally ex-
pressed in such a way that fits an aspect profile (for example, “every time a
message arrives, the server is notified”). This is, aspects manifests in require-
ments as behavior that is described as being triggered by many other behaviors
[8]. Applying aspect oriented philosophy in early stages is widely known as “early
aspects”-term first introduced by [1].

Nonetheless, some authors have pinpointed some difficulties with applying
aspect orientation in the modeling phase, specially with operational notations
inspired in finite state machines or labeled transition systems(e.g., statecharts)
[13, 12]. Many aspect oriented approaches boil down into providing syntactic
weaving mechanisms, usually with non-clear semantics counterpart [13]. Thus,
unlike other well-established modularization mechanisms as procedures, parallel

★ This work was partially funded by PAE-PICT-2007-02278:(PAE 37279), PIP 112-
200801-00955 and UBACyT X021. V. Braberman is also affiliated to CONICET

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 85



composition, or logical conjunction (in declarative approaches) aspect orienta-
tion, though attractive in principle, is still a second class citizen, holding just
the status of a hacking or dynamic instrumentation mechanism where semantics
impact is not neatly characterized.

We believe one of the main reasons for this relies in that aspect oriented
modeling techniques somehow inherited the implementation-oriented flavor as-
pects were first conceived for. In general, the behavior specified by an aspect
must be introduced exactly before, or after the occurrence of another behavior.
This is because pointcuts were originally designed to predicate and reason about
methods calls abstractions. Actually, this result in a very rigid pointcut model
for specifying requirements. This lack of flexibility causes a significant problem
known as aspect interference problem [5], which arises when two or more aspects
behavior interact with each other. Typically, this situation arises when two or
more aspects behavior are to be introduced in the very same point of interest in
our system. In these cases, several questions may arise:

– Order of execution: which one should be executed first? Why? Does it mat-
ter? This is also referred as defining aspects precedence. In some situations
the desired final behavior of the augmented system may depend in the as-
pects’ execution order. For example, consider two aspects to be added in a
protocol communicating two systems. The first one encrypts the information
following a security requirement whereas the second one prepares the data
to be sent to fit in the communication channel. It may be the case that the
data should be encrypted first and then fragmented to be sent into the com-
munication channel. In this context, if the fragmentation aspects is executed
first, then the encryption aspect may not behave as expected, perhaps even
exposing the information to possible attackers. Therefore, is essential for the
developer to completely understand aspects interaction in order to correctly
determine aspects precedence.

– Behavior Dependency : Do the aspects depend with each other or the fea-
tures to be added are orthogonal? In some cases, one aspect may depend
on another aspect behavior. This dependency may due to sharing of vari-
ables, data, or by methods invocation. If the aspects just play the role of
observers, in an read-only fashion, then there will be no dependency be-
tween them. This kind of aspects are called “spectative” [13]. However, if
the aspects modify data, variable’s values or alter somehow the execution
flow, then there may exists a dependency between them that must be prop-
erly addressed. [13] classifies these aspects as: “regulative” and “invasive”.
Aspects in the former category can modify the base system as long they
do not alter its original execution flow. On the other hand, invasive aspects
can change the base system in any way, without restrictions. Thus in prin-
ciple, they could completely invalidate any property that held previously in
the underlying system [13]. For this reason we only focus in this work on
regulative aspects.

– Reasoning in the Augmented System: Once all the aspects are weaved, what
can be said about the augmented system’ behavior? Where all the aspects

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 86



behavior introduced adequately? As is was said before, the lack of a clear
semantics regarding aspects composition difficulties reasoning about the aug-
mented behavior [13]. If several aspects are involved, then the final result may
be troublesome to predict since complex aspects interactions can arise.

We think that in order to attack the aspect interference problem is crucial for
the developer to deeply understand the implication of an aspect’s application,
thus the formalism used to specify aspects behavior plays a transcendental role.
In addition, this problem is harder to handle in early stages, since there is no
concrete implementation to inspect. In this sense, a declarative specification may
greatly help since declarativeness seems an attractive and natural approach for
capturing early requirements on behavior [19]. That is, the developer specifies
what behavior is to be added, and not how this behavior is introduced, as in
many operational notations, such as graphs-notations, finite-state machines, or
state charts. Related to this point, aspect mining techniques ([18, 10, 16]) may
help to identify aspects interactions and to point out where two or more as-
pects may have problems with their interaction. However, once the interaction
problem is identified, the developer must still face the problem to determine and
specify how these aspects must interact and the correct order of execution. In
order to do so, is must be easy for the developer to look at aspects specification
and easily define the correct precedence. As it was previously said, this is not a
trivial task, since the developer may need to understand complex compositions,
which sometimes are not clearly specified [13, 11, 15]. For example, in order to
determine the correct precedence between aspects, the developer may have to
deal with intricate automata, containing several states and transitions. Another
interesting input in order to take this decision is to reason about complemen-
tary behavior. That is, to reason about how things can go wrong and violate
the specified behavior, which represents valuable information to the developer.
Again, this is bound to a complicate task in the mentioned operational nota-
tions. For example, operations to complement the language of an automaton are
not trivial and may suffer from exponential state-explosion problems. Finally,
another useful information for detecting conflicts between aspects interaction is
the possibility of analyzing valid traces of the system. In this way, the developer
may early detect these problematic conflicts.

In few words, we would like a declarative formalism to specify aspects that
also enables the possibility of reasoning about violating behavior. Both are de-
sirable characteristics that contribute to appropriately analyze and handle as-
pects interactions. Given this context, in this work we explore Featherweight
Visual Scenarios (FVS) [3] as an aspect-oriented modeling language that cor-
rectly address the aspect interference problem. FVS, a simple fragment of VTS
(Visual Timed Scenarios) [6], is a declarative visual language to define complex
event-based requirements and to describe event patterns, which can be regarded
as simple, graphical depictions of predicates over traces, constraining expected
behavior. The formalism used is scenarios, where scenarios represent event pat-
terns, graphically depicting conditions over traces. One distinguishable feature
in FVS is that violating behavior can be automatically generated, enabling the

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 87



possibility of reasoning about complementary behavior. In FVS each aspect is
described as a rule following an antecedent-consequent shape establishing a new
condition to be met by the system. FVS holds a very flexible pointcut model
[4]. Conditions can be specified not only considering future behavior, but also
considering past behavior, or even behavior occurring given a certain scope. In
addition, valid traces can be generated for a particular set of FVS rules using a
tableaux procedure described in [6]. In a nutshell, we analyze if FVS character-
istics are capable enough to completely handle the aspect interference problem.

The rest of the paper is structured as follows. Section 2 introduces FVS
features and details how it can be seen as an aspect oriented modeling lan-
guage. Section 3 shows FVS in action addressing the aspect interference problem.
Three different and simple examples are treated and analyzed. Finally, section
4 presents the conclusions of the present work and briefly discuss future work.

2 Featherweight Visual Scenarios

In this section we will informally describe the standing features of FVS. The
reader is referred to [2, 4] for a more complete definition of the language including
a formal characterization of its semantics. We use a simple running example
based on the Telecom application, which is part of the AspectJ distribution.
Basically, this application is a simple simulation of a telephony system in which
customers make, accept, merge and hang-up both local and long distance calls.
FVS is a graphical language based on scenarios consisting of points, which are
labeled with the possible events occurring at that point, and arrows connecting
them. Two kinds of relationship can be described among points: precedence and
forbidden events. Some FVS scenarios are depicted in figure 1.

Fig. 1. FVS’ Basic Elements

Scenario in figure 1-(a) indicates that a ConnectionComplete event precedes
a ConnectionDrop event. A special notation is used to indicate the immediate
next or previous occurrence of an event after another: a second (open) arrow
near the destination point. This can be seen in figures 1-b and 1-c. Forbidden
events are specified by labeling arrows. We see forbidden behavior in action in

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 88



figure 1-d: a ConnectionComplete event precedes a ConnectionDrop event such
that HangpUp event does not occur between them. To conclude, FVS supports
aliasing between points, that can be used to represent that two or more events
occurs simultaneously. For example, scenario in rule 1-e shows an occurrence of
the PickUp event that occur simultaneously with a ConnectionComplete event.

FVS Rules We now introduce the concept of rules1, a core concept in the
language. In few words, a rule is divided into two parts: a scenario playing the
role of an antecedent and, at least, one scenario playing the role of a consequent.
The intuition is that wherever a trace “matches” a given antecedent scenario,
then at least it must match one of the consequents. Graphically, the antecedent
is shown in black, and consequents in grey. Since a rule can feature more than
one consequent, elements which do not belong to the antecedent are numbered
to identify the consequent they belong to.

To exemplify FVS rules, we model some requirements of the previously men-
tioned example. The rule in figure 2-a basically says that every established con-
nection must eventually finish. More formally, it establishes that every Connec-
tionComplete event must be followed by a ConnectionDrop event. The rule in
figure 2-b reasons consider two possible admitted behavior once the user picks
up the phone. Either the connection is established (consequent 1), or there oc-
curs an communication problem (consequent 2). Finally 2-c models conditions
needed for a call to be made. If a ConnectionComplete event is followed by a
ConnectionDrop event then it must be the case that the user hang up in between,
and also, it picked up the phone before the connection was initiated.

Fig. 2. FVS rules for the Telecom example

Anti-Scenarios An interesting feature in FVS is that anti-scenarios can be
automatically generated from rule scenarios. This is a valuable information for
the developer since they represent a sketch of how things could go wrong and
violate the rule. The complete procedure is detailed in [6], but informally the
algorithm computes all the possible situations where the antecedent is found, but
none of the consequents is matchable. One anti-scenario for the rule in figure 2-c
is shown in figure 3. In this case, the user does not hang up the phone before
the connection is dropped.

1 FVS rules corresponds to the Featherweight version of Conditional Scenarios avail-
able in VTS

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 89



PickUp
Not (HangUp)

ConnectionComplete ConnectionDrop

Fig. 3. An anti-scenario in FVS

Note that anti-scenarios are actually ordinary FVS scenarios as the ones
shown in figure 1 and they are automatically generated from a given rule. Each
of them represent a situation that violates the rule. As said, the anti-scenario in
figure 3 is an scenario that violates rule in figure 2-c: the antecedent is matched
(a ConnectionComplete event is followed by a ConnectionDrop event), but the
consequent is not satisfied. Although a PickUp event occurs prior the occurrence
of the ConnectionComplete event, there is no occurrence of an HangUp event,
and both conditions are required to occur by rule 2-c. On the other hand, FVS
rules are composed of scenarios: one scenario stands for the antecedent of the
rule, and one or more scenarios stand for the consequents of the rule. We define
scenarios representing a violation of the rule as anti-scenarios.

FVS as an Aspect-Oriented Modeling Language FVS rules fits into the
aspect oriented perspective: rules’ antecedents play the role of pointcuts, whereas
consequents play the role of advices. To illustrate FVS expressivity power as an
aspect oriented modeling language we will model the Timing aspect for the
Telecom example. This aspect is in charge of computing the duration of the
call. To achieve this objective, the aspect will start a timer when the connection
is complete and the call is initiated. Similarly, it will stop the timer when the
connection is dropped. Finally, it will compute the elapsed time according to
the timer. This behavior is depicted in figure 4. Rules in figure 4-a and 4-b
appropriately start and stop the timer respectively. Finally, rule in 4-c dictates
that the TimeElapsed event will always follow the StopTimer event.

Fig. 4. Timing Aspect in FVS

3 Handling Aspects Interaction in FVS

We believe FVS supports desirable features to address the aspect interference
problem. First, it supports a declarative specification that helps to naturally

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 90



handle aspects interaction. Second, it generates automatically for every rule anti-
scenarios, enabling the possibility of reasoning about violating behavior. Third,
the developer may inspect system valid traces generated by a tableau process,
in order to detect possible aspects interaction. That is, FVS allows localized and
partial modeling. We explore these features in the next subsections. Subsection
3.1 consider an extra aspect for the Telecom Example, the Billing aspect, who
is responsible of adding billing functionality to the Telecom application. On the
other hand, subsection 3.2 deals with an aspects interaction problem through
the use of anti-scenarios. In this case, we introduce another example, based
on the JukeBox system presented in [10]. Subsection 3.3 is focused on localized
modeling, describing the logging vs encryption conflict introduced in [9]. Finally,
subsection 3.4 analyzes the mentioned examples.

3.1 Declarative Specifications and the Aspect Interference Problem

In this section we introduce rules for the Billing Aspect, who computes the charge
of the call based on its duration. Based on the specification we obtain the rule
shown in figure 5, which says that every occurrence of the CostObtained event
must be preceded by a TimeElapsed event. In other words, it cannot be the case
that the cost of the call is obtained without its duration being calculated before.

Fig. 5. Billing Timing aspect specification in FVS

As it can be noted, there exists a conflict between the Timing Aspect and the
Billing Aspect. For the system to behave as expected, the timing aspect must
precede the billing aspect. Otherwise, the billing aspect would not be able to ful-
fill its objective. However, by simply declaratively modeling these requirements
as FVS rules the conflict was naturally solved as seen in the rule in figure 5. In
both cases, an explicit precedence relationship is present between the TimeE-
lapsed event and the CostObtained event.

The same situation in AspectJ or other textual languages is resolved by
introducing the declare precedence statement, followed by a list containing
the aspects’ names, which is introduced manually by the developer. This is clearly
an error-prone process. According to the AspectJ documentation, precedence is
determined based on the aspects’ order in the list. Thus, the first aspect in
the list has the higher precedence, and the last one has the lowest precedence.
What is more, due to AspectJ semantics, this precedence list behavior is not as
intuitive as expected. For example, the Telecom example is resolved by adding
the following line: declares precedence: Billing, Timing . So, at first sight
this might look as an error, because the clause is explicitly saying the Billing
aspect is executed first than the Timing aspect. However, precedence is actually

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 91



influenced by the execution flow. That is, for “before” advices the order behaves
as expected: aspects at the beginning of the list are executed first. However,
for “after” advices the precedence is completely reversed, because the execution
flow is “returning” to the base system. Thus, aspects are executed from the last
position to the first one. Since in the Telecom example both aspects contains
“after” advices, aspects are executed in the right order after all.

A final remark can be made about flexility in the pointcut model. In the
Telecom example, the cost of the call must be calculated exactly after the con-
nection is dropped. However, it might be the case that is no actual requirement
in the specification for the cost to be calculated at exactly that point. For ex-
ample, it could be calculated at the end of the month instead. Despite this, due
to the lack of flexibility in the pointcut model the developer is forced to use an
“after” advice, leading to premature decisions. In FVS, more flexible options are
available [4], or further rules can be added later on.

3.2 Anti-Scenarios and the Aspect Interference Problem

We now consider another example, based on the JukeBox system presented in
[10]. Basically, the Jukebox system allows a user to select a song, that then will
be reproduced by an appropriate multimedia player. Two aspects are added to
consider other requirements for the system: the FavoriteList aspect, who is in
charge of saving the last songs selected by the user, and the Counter aspect, who
is in charge of counting the number of times that a song is played for statistical
purposes. Since both aspects are applied before the song is played, their behaviors
are in conflict. Once the conflict is discovered, is up to the developer to resolve
it, by indicating the appropriate precedence of the aspects execution. A possible
specification for this situation is depicted in figure 6.

SongSelected

CounterUpdated
1

SongPlayed

SongSaved
1

1
1

1

Fig. 6. JukeBox Aspects Conflict modeled in FVS

So as to resolve the conflict between these two aspects the developer may
inspect the anti-scenarios automatically generated in FVS (see figure 7). FVS
generates four anti-scenarios. Rule in figure 7-a models the case where a song is
selected and played, but it is not saved nor the song counter is updated. Rules
in figure 7-b and 7-c model two situations where only one of the two events of
interest occurs: in the first case (figure 7-b), the song counter is updated, but
the song is not saved, whereas in the second one (figure 7-b), the song is saved in
the list, but its counter is not updated. Finally, in figure 7-d both events occur,
but the song counter is first updated, and then the song is saved. These anti-
scenarios represent valuable information for the developer in order to resolve the

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 92



conflict, since the represent a human-readable description of how things could
go wrong.

Fig. 7. Anti-scenarios for the JukeBox Conflict

By simply inspection the developer is able to analyze the interaction between
conflicting aspects and reach a possible solution. In this example, by analyzing
the anti-scenarios and in particular the fourth case, the developer may realize
that in fact both events (the song is saved and the counter is updated) can occur
in any order without affecting the system’s behavior. That is, the requirements
demand that the song must be updated and its counter updated, but actually
who is executed first is unimportant. Taking this into consideration, the devel-
oper may reformulate the original aspects interaction in figure 6 as shown in
figure 8.

SongSelected

CounterUpdated
1

SongPlayed

SongSaved
11

1
1

1

Fig. 8. Aspects interaction reformulated by analyzing anti-scenarios

3.3 Localized Modeling and the Aspect Interference Problem

Systems features in FVS can be independently inspected in FVS for early de-
tection and analysis of aspects interaction. Consider the logging vs encryption
conflict introduced in [9]. Once the server is ready, some information is sent to an
interested client, but it must be logged and encrypted first for security reasons.
This can be modeled in FVS as shown in figure 9-a. Before the data is sent, it
is encrypted and logged, as specified in both rules.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 93



Due to the tableaux process described on [6] valid traces can be generated
upon a certain set of rules. The developer may inspect them in order to detect
possible conflicts between aspects and gain more information about the specified
system behavior. A valid trace satisfying both rules in figure 9-a can be given by
the following succession of events: {ServerReady, Encrypted, Logged, DataSent}.
In this case, information is encrypted first, and logged later. Analyzing this
behavior, the developer may realize that this trace is actually an invalid one, since
the data being logged is encrypted, and therefore useless for security analysis
according to the specification. The possibility in FVS of analyzing localized
partial execution of the system may lead to positively identify and resolve aspects
interaction. In this case, the developer just need to add a new rule describing the
proper interaction between both aspects: information is logged first, and then
encrypted before being sent (see figure 9-b).

1

Fig. 9. Logging vs encryption conflict

3.4 Discussion

In the first example, the conflict between the Timing aspect and the Billing as-
pect is implicitly solved by the declarative specification as FVS rules. In these
rules it is explicitly stated the precedence between both aspects, and this infor-
mation can be obtained by simple looking at them. This information is not as
easy achievable in operational notations. Usually precedence is stated by using
UML stereotype-like constructors, and the developer is required to understand
complex artifacts’ composition in order to resolve the conflict.

In the second example, the developer uses violating behavior to understand
and resolve the interference problem between both aspects augmenting the Juke-
Box system behavior. By a simple inspection of the anti-scenarios the developer
gains valuable information about both aspects and is able to modify the behavior
with the obtained information: the original specification was too restrictive: as-
pects can be executed in any order. In the third example, the developer analyzes
valid traces of the system in order to detect and resolve a conflict between two
aspects. FVS can generate valid traces, each one different and non equivalent
with the rest. With this information, the developer can validate and express the
desired expected behavior: the original specification was too permissive, and a
new rule is added to restrict aspects behavior (logging aspects must precede the
encryption aspect). These features are crucial in early stages, where no concrete
implementation is available.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 94



Related Work In previous works we explored FVS as an aspect oriented mod-
eling language [2, 4], specially showing how the flexibility of our notation can
be seen as a very powerful join point model. Continuing this research line, in
this work we focus on illustrating how distinguishable FVS features can be ap-
plied to deal with the aspect interference problem from three different angles:
declarativeness, violating behavior, and system traces analysis.

Other works has been proposed to tackle the aspect interference problem,
from different points of view and focusing in different phases of software devel-
opment [10, 18, 20, 14, 17]. Work like [14] or [18] proposes aspect-oriented tools for
detecting conflict between interacting aspects. Both tools are based on syntac-
tic transformation over graphs. As said, we propose a totaly different approach,
moving towards a declarative language to model behavior, closer to early de-
scriptions of the systems and the way requirements are expressed [19]. Other
approaches like [10, 20] also offer a rich pointcut model based on events. Differ-
ently from our view, their use of event patterns (e.g., context free grammars)
is basically limited to point-cut determination (while in our case patterns also
indicates where “advices” may be featured).Our notion of events is abstract, we
aim at a complete description of the systems in terms of rules and we sacrifice
operationally of specification to enhance the declarative nature of our language.
Finally, [17] presents an interesting tool called MEDIATOR to support conflicts
among aspects. This framework is oriented to the implementation phase and it
also supports the notion of triggered behavior. It is worth mentioning that, to
our best knowledge, none of the previously mentioned approaches is equipped
with deductive features for complementariness reasoning.

4 Conclusions and Future Work

In the present work we identify useful features that an aspect-oriented model-
ing language should support in order to tackle the aspect interference problem.
Aspects specification should be easy to handle and understand so that their
interaction can be straightforwardly depicted. This allows the possibility that
any detected conflict between the involved aspects can be easily and naturally
resolved. In this sense, reasoning about violating behavior represents a valu-
able information for the developer. Finally, the possibility of analyzing system
valid traces for a particular set of requirements is also another meaningful in-
formation for the developer. By introducing some simple but rich examples, we
showed how FVS fulfills these characteristics. Besides providing a declarative
and flexible pointcut model, anti-scenarios can be automatically generated in
FVS. Regarding future work, we are considering enhancing FVS’s expressivity
power to enable expressing arbitrary !-regular languages. We are also working
on defining a synthesis algorithm for FVS’s rules, enabling the possibility of
elaborated automatic analysis.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 95



References

1. J. Araújo, A. Moreira, I. Brito, and A. Rashid. Aspect-oriented requirements with
UML. In M. Kandé, O. Aldawud, G. Booch, and B. Harrison, editors, Workshop
on Aspect-Oriented Modeling with UML, 2002.

2. F. Asteasuain and V. Braberman. Exploring Visual Scenarios as aspect oriented
modeling language. In ASSE 2010. 39 JAIIO, 2010.

3. F. Asteasuain and V. Braberman. Specificattion patterns can be formal and also
easy. In SEKE, 2010.

4. F. Asteasuain and V. Braberman. FVS: A declarative aspect oriented modeling
language. EJS - Electronic Journal SADIO, 10(1):20–37, 2011.

5. L. Bergmans. Towards detection of semantic conflicts between crosscutting con-
cerns. Analysis of Aspect-Oriented Software (ECOOP 2003), 2003.

6. V. Braberman, N. Kicillof, and A. Olivero. A scenario-matching approach to the
description and model checking of real-time properties. IEEE TSE, 31(12):1028–
1041, 2005.

7. R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. P. Alarcon, J. Bakker, B. Tekin-
erdogan, A. Jackson, and S. Clarke. Survey of aspect-oriented analysis and design
approaches. Technical Report AOSD-Europe-ULANC-9, AOSDEurope, 2005.

8. S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design. The Theme
Approach. Object Technology Series. Addison-Wesley, Boston, USA, 2005.

9. P. Durr, L. Bergmans, and M. Aksit. Reasoning about semantic conflicts between
aspects. In ECOOP 2006. Citeseer, 2005.

10. P. Durr, T. Staijen, L. Bergmans, and M. Aksit. Reasoning about semantic conflicts
between aspects. In 2nd European Interactive Workshop on Aspects in Software
(EIWAS05). Citeseer, 2005.

11. G. J. Holzmann. The logic of bugs. In Proceedings of the 10th ACM SIGSOFT
symposium on Foundations of software engineering, SIGSOFT ’02/FSE-10, pages
81–87, New York, NY, USA, 2002. ACM.

12. S. Katz. Diagnosis of harmful aspects using regression verification. In FOAL, pages
1–6, 2004.

13. S. Katz. Aspect categories and classes of temporal properties. In Trans. Aspect-
Oriented Softw. Develop, pages 106–134, 2006.

14. K. Mehner, M. Monga, and G. Taentzer. Interaction analysis in aspect-oriented
models. 2006.

15. D. O. Paun and M. Chechik. Events in linear-time properties. In RE, pages
123–132, USA, 1999. IEEE.

16. J. Pryor and C. Marcos. Solving conflicts in aspect-oriented applications. Proceed-
ings of the Fourth ASSE, 32, 2003.

17. S. Sandra I. Casas, J. J. Baltasar Garćıa Perez-Schofield, and C. Claudia A. Marcos.
MEDIATOR: an AOP Tool to Support Conflicts among Aspects. International
Journal of Software Engineering and Its Applications (IJSEIA), 3(3):33–44, 2009.

18. M. Storzer, R. Sterr, and F. Forster. Detecting precedence-related advice interfer-
ence. In ASE, pages 317–322. IEEE, 2006.

19. A. Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. re,
page 0249, 2001.

20. N. Weston, R. Chitchyan, and A. Rashid. Formal semantic conflict detection in
aspect-oriented requirements. Requirements engineering, 14(4):247–268, 2009.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 96




