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Abstract. Dimension reduction is often included in pattern recognizers
based on hidden Markov models to lower the size of the models to esti-
mate. Commonly used methods are heuristic in nature and do not take
care of information retention after projection. In this paper we present a
new method based on the approach of sufficient dimension reductions. It
explicitly accounts for all the discriminative information available in the
original features, while using a minimum number of linear combinations
of them. We review the underlying theory and present an algorithm for
practical implementation of the proposed method. In the experimental
side, we use simulations to illustrate its advantages over widely-used ex-
isting alternatives. In particular, we show that it performs as good as
existing techniques when data is optimal according to the assumptions
of those techniques, but significantly better for heteroscedastic data with
no special structure on the covariance matrix.

1 Introduction

Hidden Markov models (HMM) are used frequently to model sequential data
[1,2]. When the data come from different populations and the task is to classify
the sequences into one of them, a different HMM can be used to model the
data from each class. In this approach, if Y = 1, 2, . . . , h indicates the class and
X = {X1,X2, . . . ,Xn}, with X ∈ Rp, are the sequences of features, the learning
task is to estimate p(X|Y ) for each class within a parametric family of HMM1.
Typically, estimation is done using maximum likelihood and class assignment
for new observations is carried out using the Bayes classification rule [2,3].

Pattern recognizers based on HMM frequently include a dimension reduc-
tion stage to lower the size of statistical models. Smaller models lead to less
parameters to estimate, which for a given training sample usually improves the
performance of the classifier due to the smaller variance of the estimates [4,5].
A frequent choice with HMM-based classifiers is to use linear dimension re-
duction. In this type of transformations, a matrix ρ ∈ Rp×d, d ≤ p, is used to

1 We use p(·) to refer to a probability density function.
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project the original features X onto a lower-dimensional subspace with coordi-
nates ρTX ∈ Rd. These d linear combinations should not lose any information
carried by X that is relevant for discrimination. If successful, we could estimate
models for p(ρTX|Y ), instead of full-sized models for p(X|Y ).

Dimension reduction for Gaussian-mixture-HMM have been explored mainly
in speech recognition applications [6,7,8,9,10]. All of these methods are built
in the context of reduction methods for Gaussian data. The best known of
these techniques are likelihood-based extensions of linear discriminant analysis
for heteroscedastic data [7,9]. As the methods are stated in a maximum likeli-
hood framework, they can be consistently embedded into the learning process
of HMM. Nevertheless, it is worth noting that these methods have been derived
mainly from heuristics, without taking care of information retention.

Sufficient dimension reduction (SDR) is a relatively new approach that deals
explicitly with loss of information for a particular objective [11,12]. SDR de-
velopments have been more tailored to regression problems, where the essential
task is to estimate the smallest subspace of X that does not lose any information
about Y . Theory of SDR for normal data and maximum likelihood estimators
of this subspace were first developed in [13] and further extended in [14,15].
In particular, the minimal linear sufficient reduction for heteroscedastic normal
data is achieved by the estimator proposed in [15], named as likelihood acquired
directions (LAD).

In this work we introduce a sufficient dimension reduction method for HMM
with Gaussian observation densities based on the LAD estimator and give an
algorithm for its implementation. We use simulations to show that the proposed
method inherits the properties of LAD, outperforming existing dimension reduc-
tion techniques for this type of HMM.

The paper is organized as follows. In Section 2 we start by reviewing the
best-known dimension reduction method for HMM, as used widely in speech
recognition applications. Then, we summarize the basic concepts and results
about sufficient dimension reduction and its application to normal data. In Sec-
tion 3 we rely upon these results to propose a new dimension reduction method
for HMM under the sufficiency approach and give an algorithm for its implemen-
tation. The advantages of the proposed method over existing ones are illustrated
in Section 4, using simulated data. The paper ends with the obtained conclusions
and prospective work.

2 Background

2.1 Existing dimension reduction methods for HMM

Common dimension reduction methods included in HMM-based classifiers are
linear, supervised methods. Also, they are based on maximum likelihood estima-
tion so that they can be embedded in standard training procedures for HMM.
For HMM with Gaussian or Gaussian-mixture observation densities, these meth-
ods are built from projection methods for normal data [7,8,9]. In this work we
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concentrate on heteroscedastic linear discriminant analysis (HLDA) as proposed
in [7], which is the state-of-the-art method available in software for managing
HMM [16].

HLDA is derived as follows. Assume X|(Y = y) ∼ N (µy,∆y) and consider
a full-rank linear transformation of X with a matrix Θ = (ρHLDA,ρ0) so that
ΘTX ∼ N (µ∗

y,∆
∗
y), with2

µ∗
y =

(
ρTµy

ρT
0 µ

)
∆∗

y =

(
Ωy 0
0 Ω0

)
,

where µ = E(µy) and Ω0 is shared between all the classes. In this way, ρT
HLDAX

is independent of ρT
0 X and the latter is constant for all classes y. Thus, ρT

0 X does
not carry any discriminative information and can be ignored for classification.
Without loss of generality, assume that Θ is an orthogonal matrix and that
ρHLDA is semi-orthogonal. From [7], the optimum matrix Θ maximizes the log-
likelihood function

LHLDA(Θ) = −N

2
log |ρT

0 Σ̃ρ0| −
1

2

h∑
y=1

Ny log |ρT
HLDA∆̃yρHLDA|, (1)

where Σ̃ is the sample marginal covariance matrix,Ny is the sample size for pop-
ulation y and N =

∑
y Ny. The optimum does not have a closed-form solution,

so numerical techniques must be employed [7,8]. Notice that in this derivation,
beginning with normality for X|Y , restrictions are imposed in the transformed
feature space, not in the original space of X. Also, the models assumed in the
transformed space are strongly structured to allow statistical independence be-
tween ρT

HLDAX and ρT
0 X. Note that a weaker condition to reject the linear com-

binations ρT
0 X for classification is to have p(ρT

0 X|ρTX, Y = y) independent of
y. This is exploited in the sufficiency approach we discuss next.

2.2 Sufficient dimension reduction

Sufficient dimension reduction is a methodology that deals explicitly with
information retention for a particular objective. Here we review the main facts
that will be used in following sections. Formally, a linear reduction ρTX ∈ Rd,
with d ≤ p is sufficient if [13]

X|(Y,ρTX) ∼ X|ρTX. (2)

This definition implies that ρTX carries all the information about Y that is
contained in X. Note that X is always a sufficient reduction. Thus, the essential
tasks in SDR are to characterize and estimate the smallest sufficient reduction.

2 Notation S|V accounts for random variable S conditional on the value of a random
variable V . E(·) denotes mathematical expectation.
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In addition, ρ is not unique, but we can identify the subspace spanned by the
columns of ρ. This subspace Sρ = span(ρ) is called a dimension reduction sub-
space. The smallest dimension reduction subspace is called the central subspace
[11,17] and it is the inferential target in SDR.

Notice that the central subspace contains all the information to describe the
classes Y , not only to discriminate between them. In a classification setting, the
goal is actually to find a subspace of the features so that class assignment is
conditionally independent of the remaining information in X [18,19]. The suffi-
cient subspace for discrimination may be smaller, but it is always contained in
the central subspace [18]. Nevertheless, when using the Bayes rule for classifica-
tion, it was shown in [18] that this smallest discriminant subspace is the same
as the central subspace when the data from each class is normally distributed.
Thus, for this type of data, theory developed for regression tasks can be applied
straightforwardly to discrimination problems, achieving reductions that are suf-
ficient and also optimal from a minimality point of view. That is, we cannot
find a dimension reduction subspace for discrimination that is smaller than the
central subspace for this kind of data.

2.3 SDR for normal data

In this section we review the main results on SDR for normally distributed
data. They will be used in Section 3 to build a reduction method for HMM that
overcomes the limitations of state-of-the-art methods when the covariance matrix
of conditional normal densities is not constrained to a particular structure.

Assume that X|(Y = y) ∼ N (µy,∆y), for classes y = 1, 2, . . . , h, and let
∆ = E(∆y). It is shown in [15] that Sρ = span(ρ) ∈ Rp is a sufficient dimension
reduction subspace if and only if the subspace spanned by ∆ρ is an invariant
subspace of ∆y−∆ and the translated means µy−µ fall also in that subspace3.
Under these conditions, the means and covariance matrices of the class models
are [15]

µy = µ + ∆ρνy, (3)

∆y = ∆ + ∆ρTyρ
T∆,

for some νy ∈ Rd, Ty ∈ Rd×d and d = dim(Sρ), with ν̄ = E(νy) = 0, and
E(Ty) = 0 to agree with the definition of µ and ∆. It is important to emphasize
that (3) are necessary and sufficient conditions derived from theory; they are not
assumptions set a priori to derive the subspace projection method.

The model stated in (3) can be used to derive the distributions of ρTX|(Y =
y) and ρT

0 X|(ρTX, Y = y). With them, we can find an estimator of Sρ using
maximum likelihood estimation. Let ρ be a semi-orthogonal basis matrix for
Sρ ⊆ Rp and let (ρ,ρ0) ∈ Rp×p be an orthogonal matrix. The likelihood of the

3 S ∈ Rp is an invariant subspace of A ∈ Rp×p if AS ⊆ S.
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training sample reads

`(ρ; X) =
h∏

y=1

Ny∏
n=1

p(ρTX|Y = y)p(ρT
0 X|ρTX, Y = y). (4)

From here, it is shown in [15] that the minimal linear sufficient reduction is
ρT

LADX, where ρLAD maximizes over the Grassmann manifold of dimension d in
Rp the log-likelihood function

LLAD(ρ) = const +
N

2
log |ρT Σ̃ρ| − 1

2

∑
y

Ny log |ρT ∆̃yρ|. (5)

This is the LAD estimator, as named in the Statistics literature. Numerical
optimization is needed to find a solution to the optimization problem.

It is important to see also that HLDA as proposed in [7] is a especial case of
LAD, when ∆ in (3) has the very special structure [20]

∆ = ρΩρT + ρ0Ω0ρ
T
0 ,

with Ω = E(Ωy) = E(ρT∆yρ). Due to this covariance constraint, if span(ρHLDA)
and span(ρLAD) are both dimension reduction subspaces, it can be shown that
span(ρLAD) ⊆ span(ρHLDA). This means that HLDA often needs to retain more
directions than LAD in order to conserve all the information available in the
original features.

3 SDR for HMM

3.1 Derivation

When an homogeneous, Gaussian HMM ϑi is used to model a sequence from
the i-th class, it is assumed that each random vector of features Xt comes from
a normal population, conditional on the state qt of the underlying Markov chain
at time t; that is p(Xt|qt, ϑi) = N (µqt ,∆qt). In this scenario, ρ is a basis matrix
for a dimension reduction subspace if

Xt|(ρTXt, qt, ϑi) ∼ Xt|ρTXt. (6)

In this way, ρTXt and Xt have the same information on the state qt of the model
for class i, for i = 1, 2, . . . , h. Thus, if we map (qt, ϑi) onto a single index j, we
recover the condition for SDR of normal data as discussed in Section 2. It is
important to stress that the different populations for the dimension reduction
task are all the conditional observation models in each HMM. Thus, if we have h
classes, each linked to a HMM with a state space of dimension Nq, the dimension
reduction task will involve hNq normal populations.

There still remain a point to take care about. The dimension reduction prob-
lem for normal models discussed previously was a fully supervised one. That is,
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Algorithm

– Initialization
1. For each class i, set ϑ∗

i = ϑi and X ∗
i = Xi.

2. Let X ∗ =
⋃

i X
∗
i .

– Main loop: repeat until convergence
1. For each class i, infer the most probable sequences of states {q∗}i that origi-

nated the data X ∗
i according to ϑ∗

i .
2. Form the whole labelled dataset Υ =

⋃
i({q

∗}i,Xi).
3. Estimate the semiorthogonal basis matrix ρ∗ using Υ and one of the reduction

methods for normal models (LAD or HLDA).
4. Compute ρ∗

0 that spans a subspace orthogonal to span(ρ∗).
5. Build the orthogonal matrix Θ = (ρ∗ρ∗

0).
6. Lineary transform the original dataset using Θ to obtain a new X ∗.
7. For each class i, update the observation model corresponding to each estate y

of ϑi, doing µ∗
y = ΘTµy and ∆∗

y = ΘT∆yΘ.
– Finalization

1. Set ρ̂ = ρ∗.
2. For each class i, take the first d coordinates of the model parameters in ϑ∗

i to
build the final estimates of the models, ϑ̂i.

Fig. 1: Proposed algorithm for embedding sufficient dimension reduction into the
training process of a HMM-based classifier.

for each observation in the training set we knew the population from where it
came. This is not the case in the current setting, as the states qt are hidden to
the observer. Thus, data must be labelled in q in some way to apply the SDR
methods for normal data to HMM.

A first approach to get the labels is to train the HMM with the standard
Baum-Welch algorithm using the original features and, in a second step, to use
these trained models to make inference about the most probable sequences of
states that describe the training sequences. In this manner, the inferred states
can be used as labels for the observed vectors of random features, and SDR would
be applied over this labelled dataset to obtain a basis matrix ρ̂ for the dimension
reduction subspace. Despite this procedure being appealing to generate a labelled
dataset to apply the SDR methodology, it does not considers the central subspace
properly as another parameter to estimate. Furthermore, it has been shown in
previous work that embedding the estimation of the projection matrix within
the iterative estimation of the parameters of the models achieves better results in
classifcation [7,9]. In the next section we propose a simplified training algorithm
to account for this.

40JAIIO - ASAI 2011 - ISSN: 1850-2784 - Página 145



3.2 Algorithm

Dimension reduction methods using likelihood-based estimators can be em-
bedded within the Expectation-Maximization (EM) algorithm, as exploited pre-
viously in [6,7,8]. For simplicity, we show here a Viterbi-like algorithm instead
of the full Baum-Welch approach (see [3] for details about these algorithms).

Assume we have pre-initialized HMM models ϑi, one for each class. Let Xi be
the training set for class i and let X =

⋃
i Xi refer to the whole training set. The

proposed algorithm is shown in Figure 1. It is interesting to note that inference
about the most probable sequences of states is carried out in a (transformed)
feature space without rejection of any coordinate. On the other hand, classi-
fication is carried out in the reduced feature subspace with dimension d, after
projecting the new data with the estimated matrix ρ̂. This alternative was found
more stable than using just the d-dimensional projected features during the es-
timation process. The reason behind this is that information loss after rejecting
coordinates in the first iteration cannot be recovered later. Thus, as the first re-
duction is driven by a labelling process carried out using roughly trained models,
it would be common to loss important information in the rejected coordinates
at the beginning of the algorithm. It would compromomise the evolution of the
estimation unless very good initial estimates of model parameters are provided.
Using all the transformed features during the iterative estimation, the algorithm
was found stable and convergence was reached typically after a few iterations.

4 Simulation

4.1 Set up

We ran a simulation study for a two-class discrimination problem. For this
experiment, data for each class was generated using a corresponding HMM with
Gaussian observation densities. The number of hidden states was set to three
(Nq = 3) for both models. Conditional on the state of the Markov chain, observed
data was generated from a normal population with parameters

µj = ρ(νj − ν̄j),

∆j = ∆ + ∆ρ(Ωj −Ω)ρT∆,

with j = 1, 2, . . . , 6, ν̄j =
∑

j νj/6, Ω =
∑

j Ωj/6 and ∆ = ρΩρT + ρ0Ω0ρ
T
0 .

Note that this normal model fulfills the conditions to make HLDA an optimal
method for dimension reduction. Our objective in choosing this is two-fold: on
the one hand, we want to show that when the data is exactly as assumed by
HLDA, the reduction obtained with LAD is as good as the one obtained with
HLDA. On the other hand, if this original data is lineary transformed with a
nonsingular matrix η, the covariance structure gets broken and HLDA is no
longer optimal. We want to show that in this case, which also accounts for a
general covariance matrix of the populations, LAD is significantly better than
HLDA. Furthermore, this condition should illustrate that error rates achieved
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HMM for class 1

A1 =

 0.60 0.35 0.05
0 0.75 0.25
0 0 1.00


state 1 state 2 state 3

ν1,1 = (1,−3)T ν1,2 = (4, 2)T ν1,3 = (3,−1)T

Ω2,1 =

(
1.00 −0.25
−0.25 3.00

)
Ω2,2 =

(
2.00 1.50
1.50 5.00

)
Ω1,3 =

(
1.00 −0.25
−0.25 1.00

)

HMM for class 2

A2 =

 0.75 0.15 0.10
0 0.75 0.25
0 0 1.00


state 1 state 2 state 3

ν2,1 = (−1, 0)T ν2,2 = (2, 2)T ν2,3 = (2,−3)T

Ω1,1 =

(
3.00 0.25
0.25 1.00

)
Ω2,2 =

(
2.00 1.50
1.50 5.00

)
Ω2,3 =

(
1.00 −0.45
−0.45 1.00

)

Table 1: HMM parameters used in the simulation.

using LAD-derived estimators remains fairly the same after transforming the
features, due to the equivariance property of the estimator [15].

We set p = 10 and a central subspace of dimension d = 2. Table 1 shows the
values set for HMM parameters in the sufficient subspace. Note that there is not
anything special in the chosen values. They could have been set at random, but
specific values have been prefered to make the experiment easily reproducible.
A training set and an independent testing set were randomly generated for each
class using the model parameters stated above. Each generated sequence Xn =
{X1, . . . ,XTn} had a number Tn of feature vectors which varied randomly as
2Nq ≤ Tn ≤ 5Nq. Each feature vector Xt was drawn from a Gaussian density
conditional on the state qt of the related hidden Markov chain at that time. For
the dimension reduction stage, computations were carried out using the software
available from [21].

4.2 Results

We compared the performance of the following classifiers: i) HMMNORED,
in which each HMM was trained with the Baum-Welch algorithm using the
original 10-dimensional feature space; ii) HMMEXT-LAD, which includes dimension
reduction using LAD but is not embedded in HMM training; iii) HMMLAD, in
which LAD is embedded in the iterative training process of the HMM, using the
algorithm described in Section 3.2; and iv) HMMHLDA, in which the embedded
method is HLDA.

40JAIIO - ASAI 2011 - ISSN: 1850-2784 - Página 147



Sample size HMMNORED HMMEXT-LAD HMMHLDA HMMLAD

2× 100 0.1465 0.0805 0.0425 0.0220
2× 1000 0.1080 0.0928 0.0424 0.0229
2× 5000 0.1949 0.1014 0.0571 0.0234

Table 2: Error rate obtained with each classifier for different sizes of the training
set. Reported values are means over ten runs of the experiment.

Sample size HMMNORED HMMEXT-LAD HMMHLDA HMMLAD

2× 100 0.1445 0.1045 0.2045 0.0235
2× 1000 0.1153 0.0954 0.1698 0.0222
2× 5000 0.1549 0.1043 0.1925 0.0237

Table 3: Error rate obtained with each classifier for different sizes of the training
set, after transformation of the original data with a nonsingular matrix η. Re-
ported values are means over ten runs of the experiment. In these experiments,
data was obtained linearly transforming the datasets used in Table 2.

We ran the experiment for different sizes of the training set. In all the cases,
classification was carried out over independent test sets with the same size as
the training set used in the given experiment. The same datasets and the same
initial estimates of the models were used for all the classifiers, so that random
initialization has no effect on the relative performance of the tested schemes.

Table 2 shows the obtained results. Reported error rates are mean values over
ten runs of the experiment. It can be seen that embedding the estimation of the
reduction into HMM training provides better results that reducing dimensional-
ity externally or not reducing at all, as suggested from the superior performance
of both HMMHLDA and HMMLAD over HMMEXT-LAD and HMMNORED. It is clearly
seen also that HMMLAD outperforms the other alternatives; results are signifi-
cant at the 5% level for each size of the training set. It is interesting to note that
the superiority of HMMLAD is significant even at the 1% level for the smallest
training sample. Thus, despite the fact that HLDA provides a priori a more
parsimonious description of the data, estimation of such structured model is
actually harder in practice. Boxplots of the achieved error rates are shown in
Figure 2.a) to c). It can be seen also that achieved error rates show significant
less variability using the embedded LAD method than with the other methods.

Finally, let us consider the effect of transforming the dataset with a nonsin-
gular matrix η ∈ Rp×p generated randomly. Obtained results are given in Table
3, and corresponding boxplots are shown in Figure 2.d) to f). If we concentrate
on the difference in error rate achieved with each reduction method after trans-
forming the features compared to its performance with the original features, it
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Fig. 2: Error rates achieved with classifiers HMMNORED, HMMEXT-LAD, HMMHLDA

and HMMLAD for different sizes of the training and testing samples. a) 100 se-
quences per class; b) 1000 sequences per class; c) 5000 sequences per class; d)-f)
same as a)-c), respectively, but after linear transformation of the data with a
matrix η.

is found that increments are not significant for HMMNORED, HMMEXT-LAD and
HMMLAD, but HMMHLDA is strongly affected by the transformation. This clearly
illustrates the fact that for a fixed dimension of the dimension reduction sub-
space, HLDA is an optimal reduction only for a very particular covariance struc-
ture. Thus, more directions should be retained for conservation of the original
information. In addition, it is important to note that boxplots remain fairly the
same after transforming the features for the reduction methods involving LAD,
albeit some increase in variability for the smallest training sample.
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Fig. 3: Comparison of error rates achieved when using inference on the sequences
of states that generated the observations (HMMHLDA and HMMLAD), against
using the true paths for labelling the data for the dimension reduction stage
(HMMHLDAo and HMMLADo).

All of these results show the main advantages of using a reduction method
based upon the LAD estimator for normal populations. It is worth noting that for
HMM the LAD method seems to achieve significant better results than HLDA
even for data generated from conditional normal models with the covariance
structure assumed by HLDA. The reason is that the data transformations in-
duced by LAD during the iterative learning process allow for better inference
of the sequences of hidden states that most likely generated the observed data,
which in turn helps to get a better labelling of the data as needed for the re-
duction. To show this, we compared the error rates achieved embedding HLDA
and LAD as proposed in Section 3.2, against the error rates achieved when the
true sequences of states that generated the data are used to label the data be-
fore the dimension reduction stage. Results are shown in Figure 3. It can be
seen that, unlike LAD, inference on the optimal sequence of states degrades the
performance of HLDA significantly.

5 Conclusions

In this paper we presented a subspace projection method for Gaussian-hidden
Markov models that achieves a minimal sufficient reduction of the feature space.
Simulations shown that the proposed method clearly outperforms them when
no further structure in the covariance matrices is assumed, and that it is as
good as these techniques even for their most favorable conditions. Experiments
with real data are needed to further validate the method in real-world scenarios.
In addition, future work should also address projection schemes onto multiple
subspaces.
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